circuitpython/ports/esp8266/modesp.c
Damien George c13f9f209d all: Convert nlr_raise(mp_obj_new_exception_msg(x)) to mp_raise_msg(x).
This helper function was added a while ago and these are the remaining
cases to convert, to save a bit of code size.
2019-11-05 11:35:45 +11:00

389 lines
14 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2015 Paul Sokolovsky
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "py/gc.h"
#include "py/runtime.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "drivers/dht/dht.h"
#include "uart.h"
#include "user_interface.h"
#include "mem.h"
#include "ets_alt_task.h"
#include "espneopixel.h"
#include "espapa102.h"
#include "modmachine.h"
#define MODESP_INCLUDE_CONSTANTS (1)
void error_check(bool status, const char *msg) {
if (!status) {
mp_raise_msg(&mp_type_OSError, msg);
}
}
STATIC mp_obj_t esp_osdebug(mp_obj_t val) {
if (val == mp_const_none) {
uart_os_config(-1);
} else {
uart_os_config(mp_obj_get_int(val));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp_osdebug_obj, esp_osdebug);
STATIC mp_obj_t esp_sleep_type(size_t n_args, const mp_obj_t *args) {
if (n_args == 0) {
return mp_obj_new_int(wifi_get_sleep_type());
} else {
wifi_set_sleep_type(mp_obj_get_int(args[0]));
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp_sleep_type_obj, 0, 1, esp_sleep_type);
STATIC mp_obj_t esp_deepsleep(size_t n_args, const mp_obj_t *args) {
uint32_t sleep_us = n_args > 0 ? mp_obj_get_int(args[0]) : 0;
// prepare for RTC reset at wake up
rtc_prepare_deepsleep(sleep_us);
system_deep_sleep_set_option(n_args > 1 ? mp_obj_get_int(args[1]) : 0);
system_deep_sleep(sleep_us);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(esp_deepsleep_obj, 0, 2, esp_deepsleep);
STATIC mp_obj_t esp_flash_id() {
return mp_obj_new_int(spi_flash_get_id());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(esp_flash_id_obj, esp_flash_id);
STATIC mp_obj_t esp_flash_read(mp_obj_t offset_in, mp_obj_t len_or_buf_in) {
mp_int_t offset = mp_obj_get_int(offset_in);
mp_int_t len;
byte *buf;
bool alloc_buf = mp_obj_is_int(len_or_buf_in);
if (alloc_buf) {
len = mp_obj_get_int(len_or_buf_in);
buf = m_new(byte, len);
} else {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(len_or_buf_in, &bufinfo, MP_BUFFER_WRITE);
len = bufinfo.len;
buf = bufinfo.buf;
}
// We know that allocation will be 4-byte aligned for sure
SpiFlashOpResult res = spi_flash_read(offset, (uint32_t*)buf, len);
if (res == SPI_FLASH_RESULT_OK) {
if (alloc_buf) {
return mp_obj_new_bytes(buf, len);
}
return mp_const_none;
}
if (alloc_buf) {
m_del(byte, buf, len);
}
mp_raise_OSError(res == SPI_FLASH_RESULT_TIMEOUT ? MP_ETIMEDOUT : MP_EIO);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(esp_flash_read_obj, esp_flash_read);
STATIC mp_obj_t esp_flash_write(mp_obj_t offset_in, const mp_obj_t buf_in) {
mp_int_t offset = mp_obj_get_int(offset_in);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ);
if (bufinfo.len & 0x3) {
mp_raise_ValueError("len must be multiple of 4");
}
ets_loop_iter(); // flash access takes time so run any pending tasks
SpiFlashOpResult res = spi_flash_write(offset, bufinfo.buf, bufinfo.len);
ets_loop_iter();
if (res == SPI_FLASH_RESULT_OK) {
return mp_const_none;
}
mp_raise_OSError(res == SPI_FLASH_RESULT_TIMEOUT ? MP_ETIMEDOUT : MP_EIO);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(esp_flash_write_obj, esp_flash_write);
STATIC mp_obj_t esp_flash_erase(mp_obj_t sector_in) {
mp_int_t sector = mp_obj_get_int(sector_in);
ets_loop_iter(); // flash access takes time so run any pending tasks
SpiFlashOpResult res = spi_flash_erase_sector(sector);
ets_loop_iter();
if (res == SPI_FLASH_RESULT_OK) {
return mp_const_none;
}
mp_raise_OSError(res == SPI_FLASH_RESULT_TIMEOUT ? MP_ETIMEDOUT : MP_EIO);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp_flash_erase_obj, esp_flash_erase);
STATIC mp_obj_t esp_flash_size(void) {
extern char flashchip;
// For SDK 1.5.2, either address has shifted and not mirrored in
// eagle.rom.addr.v6.ld, or extra initial member was added.
SpiFlashChip *flash = (SpiFlashChip*)(&flashchip + 4);
#if 0
printf("deviceId: %x\n", flash->deviceId);
printf("chip_size: %u\n", flash->chip_size);
printf("block_size: %u\n", flash->block_size);
printf("sector_size: %u\n", flash->sector_size);
printf("page_size: %u\n", flash->page_size);
printf("status_mask: %u\n", flash->status_mask);
#endif
return mp_obj_new_int_from_uint(flash->chip_size);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(esp_flash_size_obj, esp_flash_size);
// If there's just 1 loadable segment at the start of flash,
// we assume there's a yaota8266 bootloader.
#define IS_OTA_FIRMWARE() ((*(uint32_t*)0x40200000 & 0xff00) == 0x100)
extern byte _firmware_size[];
STATIC mp_obj_t esp_flash_user_start(void) {
return MP_OBJ_NEW_SMALL_INT((uint32_t)_firmware_size);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(esp_flash_user_start_obj, esp_flash_user_start);
STATIC mp_obj_t esp_check_fw(void) {
MD5_CTX ctx;
char *fw_start = (char*)0x40200000;
if (IS_OTA_FIRMWARE()) {
// Skip yaota8266 bootloader
fw_start += 0x3c000;
}
uint32_t size = *(uint32_t*)(fw_start + 0x8ffc);
printf("size: %d\n", size);
if (size > 1024 * 1024) {
printf("Invalid size\n");
return mp_const_false;
}
MD5Init(&ctx);
MD5Update(&ctx, fw_start + 4, size - 4);
unsigned char digest[16];
MD5Final(digest, &ctx);
printf("md5: ");
for (int i = 0; i < 16; i++) {
printf("%02x", digest[i]);
}
printf("\n");
return mp_obj_new_bool(memcmp(digest, fw_start + size, sizeof(digest)) == 0);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(esp_check_fw_obj, esp_check_fw);
STATIC mp_obj_t esp_neopixel_write_(mp_obj_t pin, mp_obj_t buf, mp_obj_t is800k) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
esp_neopixel_write(mp_obj_get_pin_obj(pin)->phys_port,
(uint8_t*)bufinfo.buf, bufinfo.len, mp_obj_is_true(is800k));
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(esp_neopixel_write_obj, esp_neopixel_write_);
#if MICROPY_ESP8266_APA102
STATIC mp_obj_t esp_apa102_write_(mp_obj_t clockPin, mp_obj_t dataPin, mp_obj_t buf) {
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf, &bufinfo, MP_BUFFER_READ);
esp_apa102_write(mp_obj_get_pin_obj(clockPin)->phys_port,
mp_obj_get_pin_obj(dataPin)->phys_port,
(uint8_t*)bufinfo.buf, bufinfo.len);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(esp_apa102_write_obj, esp_apa102_write_);
#endif
STATIC mp_obj_t esp_freemem() {
return MP_OBJ_NEW_SMALL_INT(system_get_free_heap_size());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(esp_freemem_obj, esp_freemem);
STATIC mp_obj_t esp_meminfo() {
system_print_meminfo();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(esp_meminfo_obj, esp_meminfo);
STATIC mp_obj_t esp_malloc(mp_obj_t size_in) {
return MP_OBJ_NEW_SMALL_INT((mp_uint_t)os_malloc(mp_obj_get_int(size_in)));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp_malloc_obj, esp_malloc);
STATIC mp_obj_t esp_free(mp_obj_t addr_in) {
os_free((void*)mp_obj_get_int(addr_in));
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp_free_obj, esp_free);
STATIC mp_obj_t esp_esf_free_bufs(mp_obj_t idx_in) {
return MP_OBJ_NEW_SMALL_INT(ets_esf_free_bufs(mp_obj_get_int(idx_in)));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp_esf_free_bufs_obj, esp_esf_free_bufs);
#if MICROPY_EMIT_XTENSA || MICROPY_EMIT_INLINE_XTENSA
// We provide here a way of committing executable data to a region from
// which it can be executed by the CPU. There are 2 such writable regions:
// - iram1, which may have some space left at the end of it
// - memory-mapped flash rom
//
// By default the iram1 region (the space at the end of it) is used. The
// user can select iram1 or a section of flash by calling the
// esp.set_native_code_location() function; see below. If flash is selected
// then it is erased as needed.
#define IRAM1_END (0x40108000)
#define FLASH_START (0x40200000)
#define FLASH_END (0x40300000)
#define FLASH_SEC_SIZE (4096)
#define ESP_NATIVE_CODE_IRAM1 (0)
#define ESP_NATIVE_CODE_FLASH (1)
extern uint32_t _lit4_end;
STATIC uint32_t esp_native_code_location;
STATIC uint32_t esp_native_code_start;
STATIC uint32_t esp_native_code_end;
STATIC uint32_t esp_native_code_cur;
STATIC uint32_t esp_native_code_erased;
void esp_native_code_init(void) {
esp_native_code_location = ESP_NATIVE_CODE_IRAM1;
esp_native_code_start = (uint32_t)&_lit4_end;
esp_native_code_end = IRAM1_END;
esp_native_code_cur = esp_native_code_start;
esp_native_code_erased = 0;
}
void *esp_native_code_commit(void *buf, size_t len) {
//printf("COMMIT(buf=%p, len=%u, start=%08x, cur=%08x, end=%08x, erased=%08x)\n", buf, len, esp_native_code_start, esp_native_code_cur, esp_native_code_end, esp_native_code_erased);
len = (len + 3) & ~3;
if (esp_native_code_cur + len > esp_native_code_end) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_MemoryError,
"memory allocation failed, allocating %u bytes for native code", (uint)len));
}
void *dest;
if (esp_native_code_location == ESP_NATIVE_CODE_IRAM1) {
dest = (void*)esp_native_code_cur;
memcpy(dest, buf, len);
} else {
SpiFlashOpResult res;
while (esp_native_code_erased < esp_native_code_cur + len) {
ets_loop_iter(); // flash access takes time so run any pending tasks
res = spi_flash_erase_sector(esp_native_code_erased / FLASH_SEC_SIZE);
if (res != SPI_FLASH_RESULT_OK) {
break;
}
esp_native_code_erased += FLASH_SEC_SIZE;
}
ets_loop_iter();
if (res == SPI_FLASH_RESULT_OK) {
res = spi_flash_write(esp_native_code_cur, buf, len);
ets_loop_iter();
}
if (res != SPI_FLASH_RESULT_OK) {
mp_raise_OSError(res == SPI_FLASH_RESULT_TIMEOUT ? MP_ETIMEDOUT : MP_EIO);
}
dest = (void*)(FLASH_START + esp_native_code_cur);
}
esp_native_code_cur += len;
return dest;
}
STATIC mp_obj_t esp_set_native_code_location(mp_obj_t start_in, mp_obj_t len_in) {
if (start_in == mp_const_none && len_in == mp_const_none) {
// use end of iram1 region
esp_native_code_init();
} else {
// use flash; input params are byte offsets from start of flash
esp_native_code_location = ESP_NATIVE_CODE_FLASH;
esp_native_code_start = mp_obj_get_int(start_in);
esp_native_code_end = esp_native_code_start + mp_obj_get_int(len_in);
esp_native_code_cur = esp_native_code_start;
esp_native_code_erased = esp_native_code_start;
// memory-mapped flash is limited in extents to 1MByte
if (esp_native_code_end > FLASH_END - FLASH_START) {
mp_raise_ValueError("flash location must be below 1MByte");
}
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(esp_set_native_code_location_obj, esp_set_native_code_location);
#endif
STATIC const mp_rom_map_elem_t esp_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_esp) },
{ MP_ROM_QSTR(MP_QSTR_osdebug), MP_ROM_PTR(&esp_osdebug_obj) },
{ MP_ROM_QSTR(MP_QSTR_sleep_type), MP_ROM_PTR(&esp_sleep_type_obj) },
{ MP_ROM_QSTR(MP_QSTR_deepsleep), MP_ROM_PTR(&esp_deepsleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_flash_id), MP_ROM_PTR(&esp_flash_id_obj) },
{ MP_ROM_QSTR(MP_QSTR_flash_read), MP_ROM_PTR(&esp_flash_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_flash_write), MP_ROM_PTR(&esp_flash_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_flash_erase), MP_ROM_PTR(&esp_flash_erase_obj) },
{ MP_ROM_QSTR(MP_QSTR_flash_size), MP_ROM_PTR(&esp_flash_size_obj) },
{ MP_ROM_QSTR(MP_QSTR_flash_user_start), MP_ROM_PTR(&esp_flash_user_start_obj) },
#if MICROPY_ESP8266_NEOPIXEL
{ MP_ROM_QSTR(MP_QSTR_neopixel_write), MP_ROM_PTR(&esp_neopixel_write_obj) },
#endif
#if MICROPY_ESP8266_APA102
{ MP_ROM_QSTR(MP_QSTR_apa102_write), MP_ROM_PTR(&esp_apa102_write_obj) },
#endif
{ MP_ROM_QSTR(MP_QSTR_dht_readinto), MP_ROM_PTR(&dht_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_freemem), MP_ROM_PTR(&esp_freemem_obj) },
{ MP_ROM_QSTR(MP_QSTR_meminfo), MP_ROM_PTR(&esp_meminfo_obj) },
{ MP_ROM_QSTR(MP_QSTR_check_fw), MP_ROM_PTR(&esp_check_fw_obj) },
{ MP_ROM_QSTR(MP_QSTR_info), MP_ROM_PTR(&pyb_info_obj) }, // TODO delete/rename/move elsewhere
{ MP_ROM_QSTR(MP_QSTR_malloc), MP_ROM_PTR(&esp_malloc_obj) },
{ MP_ROM_QSTR(MP_QSTR_free), MP_ROM_PTR(&esp_free_obj) },
{ MP_ROM_QSTR(MP_QSTR_esf_free_bufs), MP_ROM_PTR(&esp_esf_free_bufs_obj) },
#if MICROPY_EMIT_XTENSA || MICROPY_EMIT_INLINE_XTENSA
{ MP_ROM_QSTR(MP_QSTR_set_native_code_location), MP_ROM_PTR(&esp_set_native_code_location_obj) },
#endif
#if MODESP_INCLUDE_CONSTANTS
{ MP_ROM_QSTR(MP_QSTR_SLEEP_NONE), MP_ROM_INT(NONE_SLEEP_T) },
{ MP_ROM_QSTR(MP_QSTR_SLEEP_LIGHT), MP_ROM_INT(LIGHT_SLEEP_T) },
{ MP_ROM_QSTR(MP_QSTR_SLEEP_MODEM), MP_ROM_INT(MODEM_SLEEP_T) },
#endif
};
STATIC MP_DEFINE_CONST_DICT(esp_module_globals, esp_module_globals_table);
const mp_obj_module_t esp_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&esp_module_globals,
};