814 lines
30 KiB
C
814 lines
30 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2021 Mike Teachman
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <stdbool.h>
|
|
|
|
#include "py/obj.h"
|
|
#include "py/runtime.h"
|
|
#include "py/misc.h"
|
|
#include "py/stream.h"
|
|
#include "py/objstr.h"
|
|
#include "modmachine.h"
|
|
#include "mphalport.h"
|
|
|
|
#if MICROPY_PY_MACHINE_I2S
|
|
|
|
#include "driver/i2s.h"
|
|
#include "soc/i2s_reg.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/task.h"
|
|
#include "freertos/queue.h"
|
|
#include "esp_task.h"
|
|
|
|
// The I2S module has 3 modes of operation:
|
|
//
|
|
// Mode1: Blocking
|
|
// - readinto() and write() methods block until the supplied buffer is filled (read) or emptied (write)
|
|
// - this is the default mode of operation
|
|
//
|
|
// Mode2: Non-Blocking
|
|
// - readinto() and write() methods return immediately.
|
|
// - buffer filling and emptying happens asynchronously to the main MicroPython task
|
|
// - a callback function is called when the supplied buffer has been filled (read) or emptied (write)
|
|
// - non-blocking mode is enabled when a callback is set with the irq() method
|
|
// - a FreeRTOS task is created to implement the asynchronous background operations
|
|
// - a FreeRTOS queue is used to transfer the supplied buffer to the background task
|
|
//
|
|
// Mode3: Uasyncio
|
|
// - implements the stream protocol
|
|
// - uasyncio mode is enabled when the ioctl() function is called
|
|
// - the I2S event queue is used to detect that I2S samples can be read or written from/to DMA memory
|
|
//
|
|
// The samples contained in the app buffer supplied for the readinto() and write() methods have the following convention:
|
|
// Mono: little endian format
|
|
// Stereo: little endian format, left channel first
|
|
//
|
|
// I2S terms:
|
|
// "frame": consists of two audio samples (Left audio sample + Right audio sample)
|
|
//
|
|
// Misc:
|
|
// - for Mono configuration:
|
|
// - readinto method: samples are gathered from the L channel only
|
|
// - write method: every sample is output to both the L and R channels
|
|
// - for readinto method the I2S hardware is read using 8-byte frames
|
|
// (this is standard for almost all I2S hardware, such as MEMS microphones)
|
|
// - all sample data transfers use DMA
|
|
|
|
#define I2S_TASK_PRIORITY (ESP_TASK_PRIO_MIN + 1)
|
|
#define I2S_TASK_STACK_SIZE (2048)
|
|
|
|
#define DMA_BUF_LEN_IN_I2S_FRAMES (256)
|
|
|
|
// The transform buffer is used with the readinto() method to bridge the opaque DMA memory on the ESP devices
|
|
// with the app buffer. It facilitates audio sample transformations. e.g. 32-bits samples to 16-bit samples.
|
|
// The size of 240 bytes is an engineering optimum that balances transfer performance with an acceptable use of heap space
|
|
#define SIZEOF_TRANSFORM_BUFFER_IN_BYTES (240)
|
|
|
|
#define NUM_I2S_USER_FORMATS (4)
|
|
#define I2S_RX_FRAME_SIZE_IN_BYTES (8)
|
|
|
|
typedef enum {
|
|
MONO,
|
|
STEREO
|
|
} format_t;
|
|
|
|
typedef enum {
|
|
BLOCKING,
|
|
NON_BLOCKING,
|
|
UASYNCIO
|
|
} io_mode_t;
|
|
|
|
typedef enum {
|
|
I2S_TX_TRANSFER,
|
|
I2S_RX_TRANSFER,
|
|
} direction_t;
|
|
|
|
typedef struct _non_blocking_descriptor_t {
|
|
mp_buffer_info_t appbuf;
|
|
mp_obj_t callback;
|
|
direction_t direction;
|
|
} non_blocking_descriptor_t;
|
|
|
|
typedef struct _machine_i2s_obj_t {
|
|
mp_obj_base_t base;
|
|
i2s_port_t port;
|
|
mp_hal_pin_obj_t sck;
|
|
mp_hal_pin_obj_t ws;
|
|
mp_hal_pin_obj_t sd;
|
|
int8_t mode;
|
|
i2s_bits_per_sample_t bits;
|
|
format_t format;
|
|
int32_t rate;
|
|
int32_t ibuf;
|
|
mp_obj_t callback_for_non_blocking;
|
|
io_mode_t io_mode;
|
|
uint8_t transform_buffer[SIZEOF_TRANSFORM_BUFFER_IN_BYTES];
|
|
QueueHandle_t i2s_event_queue;
|
|
QueueHandle_t non_blocking_mode_queue;
|
|
TaskHandle_t non_blocking_mode_task;
|
|
} machine_i2s_obj_t;
|
|
|
|
STATIC mp_obj_t machine_i2s_deinit(mp_obj_t self_in);
|
|
|
|
// The frame map is used with the readinto() method to transform the audio sample data coming
|
|
// from DMA memory (32-bit stereo, with the L and R channels reversed) to the format specified
|
|
// in the I2S constructor. e.g. 16-bit mono
|
|
STATIC const int8_t i2s_frame_map[NUM_I2S_USER_FORMATS][I2S_RX_FRAME_SIZE_IN_BYTES] = {
|
|
{ 6, 7, -1, -1, -1, -1, -1, -1 }, // Mono, 16-bits
|
|
{ 4, 5, 6, 7, -1, -1, -1, -1 }, // Mono, 32-bits
|
|
{ 6, 7, 2, 3, -1, -1, -1, -1 }, // Stereo, 16-bits
|
|
{ 4, 5, 6, 7, 0, 1, 2, 3 }, // Stereo, 32-bits
|
|
};
|
|
|
|
STATIC machine_i2s_obj_t *machine_i2s_obj[I2S_NUM_MAX];
|
|
|
|
void machine_i2s_init0() {
|
|
for (i2s_port_t p = 0; p < I2S_NUM_MAX; p++) {
|
|
machine_i2s_obj[p] = NULL;
|
|
}
|
|
}
|
|
|
|
// The following function takes a sample buffer and swaps L/R channels
|
|
//
|
|
// Background: For 32-bit stereo, the ESP-IDF API has a L/R channel orientation that breaks
|
|
// convention with other ESP32 channel formats
|
|
//
|
|
// appbuf[] = [L_0-7, L_8-15, L_16-23, L_24-31, R_0-7, R_8-15, R_16-23, R_24-31] = [Left channel, Right channel]
|
|
// dma[] = [R_0-7, R_8-15, R_16-23, R_24-31, L_0-7, L_8-15, L_16-23, L_24-31] = [Right channel, Left channel]
|
|
//
|
|
// where:
|
|
// L_0-7 is the least significant byte of the 32 bit sample in the Left channel
|
|
// L_24-31 is the most significant byte of the 32 bit sample in the Left channel
|
|
//
|
|
// Example:
|
|
//
|
|
// appbuf[] = [0x99, 0xBB, 0x11, 0x22, 0x44, 0x55, 0xAB, 0x77] = [Left channel, Right channel]
|
|
// dma[] = [0x44, 0x55, 0xAB, 0x77, 0x99, 0xBB, 0x11, 0x22] = [Right channel, Left channel]
|
|
// where:
|
|
// LEFT Channel = 0x99, 0xBB, 0x11, 0x22
|
|
// RIGHT Channel = 0x44, 0x55, 0xAB, 0x77
|
|
//
|
|
// samples in appbuf are in little endian format:
|
|
// 0x77 is the most significant byte of the 32-bit sample
|
|
// 0x44 is the least significant byte of the 32-bit sample
|
|
STATIC void swap_32_bit_stereo_channels(mp_buffer_info_t *bufinfo) {
|
|
int32_t swap_sample;
|
|
int32_t *sample = bufinfo->buf;
|
|
uint32_t num_samples = bufinfo->len / 4;
|
|
for (uint32_t i = 0; i < num_samples; i += 2) {
|
|
swap_sample = sample[i + 1];
|
|
sample[i + 1] = sample[i];
|
|
sample[i] = swap_sample;
|
|
}
|
|
}
|
|
|
|
STATIC int8_t get_frame_mapping_index(i2s_bits_per_sample_t bits, format_t format) {
|
|
if (format == MONO) {
|
|
if (bits == I2S_BITS_PER_SAMPLE_16BIT) {
|
|
return 0;
|
|
} else { // 32 bits
|
|
return 1;
|
|
}
|
|
} else { // STEREO
|
|
if (bits == I2S_BITS_PER_SAMPLE_16BIT) {
|
|
return 2;
|
|
} else { // 32 bits
|
|
return 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC i2s_bits_per_sample_t get_dma_bits(uint8_t mode, i2s_bits_per_sample_t bits) {
|
|
if (mode == (I2S_MODE_MASTER | I2S_MODE_TX)) {
|
|
return bits;
|
|
} else { // Master Rx
|
|
// read 32 bit samples for I2S hardware. e.g. MEMS microphones
|
|
return I2S_BITS_PER_SAMPLE_32BIT;
|
|
}
|
|
}
|
|
|
|
STATIC i2s_channel_fmt_t get_dma_format(uint8_t mode, format_t format) {
|
|
if (mode == (I2S_MODE_MASTER | I2S_MODE_TX)) {
|
|
if (format == MONO) {
|
|
return I2S_CHANNEL_FMT_ONLY_LEFT;
|
|
} else { // STEREO
|
|
return I2S_CHANNEL_FMT_RIGHT_LEFT;
|
|
}
|
|
} else { // Master Rx
|
|
// read stereo frames for all I2S hardware
|
|
return I2S_CHANNEL_FMT_RIGHT_LEFT;
|
|
}
|
|
}
|
|
|
|
STATIC uint32_t get_dma_buf_count(uint8_t mode, i2s_bits_per_sample_t bits, format_t format, int32_t ibuf) {
|
|
// calculate how many DMA buffers need to be allocated
|
|
uint32_t dma_frame_size_in_bytes =
|
|
(get_dma_bits(mode, bits) / 8) * (get_dma_format(mode, format) == I2S_CHANNEL_FMT_RIGHT_LEFT ? 2: 1);
|
|
|
|
uint32_t dma_buf_count = ibuf / (DMA_BUF_LEN_IN_I2S_FRAMES * dma_frame_size_in_bytes);
|
|
|
|
return dma_buf_count;
|
|
}
|
|
|
|
STATIC uint32_t fill_appbuf_from_dma(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) {
|
|
|
|
// copy audio samples from DMA memory to the app buffer
|
|
// audio samples are read from DMA memory in chunks
|
|
// loop, reading and copying chunks until the app buffer is filled
|
|
// For uasyncio mode, the loop will make an early exit if DMA memory becomes empty
|
|
// Example:
|
|
// a MicroPython I2S object is configured for 16-bit mono (2 bytes per audio sample).
|
|
// For every frame coming from DMA (8 bytes), 2 bytes are "cherry picked" and
|
|
// copied to the supplied app buffer.
|
|
// Thus, for every 1 byte copied to the app buffer, 4 bytes are read from DMA memory.
|
|
// If a 8kB app buffer is supplied, 32kB of audio samples is read from DMA memory.
|
|
|
|
uint32_t a_index = 0;
|
|
uint8_t *app_p = appbuf->buf;
|
|
uint8_t appbuf_sample_size_in_bytes = (self->bits / 8) * (self->format == STEREO ? 2: 1);
|
|
uint32_t num_bytes_needed_from_dma = appbuf->len * (I2S_RX_FRAME_SIZE_IN_BYTES / appbuf_sample_size_in_bytes);
|
|
while (num_bytes_needed_from_dma) {
|
|
uint32_t num_bytes_requested_from_dma = MIN(sizeof(self->transform_buffer), num_bytes_needed_from_dma);
|
|
uint32_t num_bytes_received_from_dma = 0;
|
|
|
|
TickType_t delay;
|
|
if (self->io_mode == UASYNCIO) {
|
|
delay = 0; // stop i2s_read() operation if DMA memory becomes empty
|
|
} else {
|
|
delay = portMAX_DELAY; // block until supplied buffer is filled
|
|
}
|
|
|
|
// read a chunk of audio samples from DMA memory
|
|
check_esp_err(i2s_read(
|
|
self->port,
|
|
self->transform_buffer,
|
|
num_bytes_requested_from_dma,
|
|
&num_bytes_received_from_dma,
|
|
delay));
|
|
|
|
// process the transform buffer one frame at a time.
|
|
// copy selected bytes from the transform buffer into the user supplied appbuf.
|
|
// Example:
|
|
// a MicroPython I2S object is configured for 16-bit mono. This configuration associates to
|
|
// a frame map index of 0 = { 6, 7, -1, -1, -1, -1, -1, -1 } in the i2s_frame_map array
|
|
// This mapping indicates:
|
|
// appbuf[x+0] = frame[6]
|
|
// appbuf[x+1] = frame[7]
|
|
// frame bytes 0-5 are not used
|
|
|
|
uint32_t t_index = 0;
|
|
uint8_t f_index = get_frame_mapping_index(self->bits, self->format);
|
|
while (t_index < num_bytes_received_from_dma) {
|
|
uint8_t *transform_p = self->transform_buffer + t_index;
|
|
|
|
for (uint8_t i = 0; i < I2S_RX_FRAME_SIZE_IN_BYTES; i++) {
|
|
int8_t t_to_a_mapping = i2s_frame_map[f_index][i];
|
|
if (t_to_a_mapping != -1) {
|
|
*app_p++ = transform_p[t_to_a_mapping];
|
|
a_index++;
|
|
}
|
|
t_index++;
|
|
}
|
|
}
|
|
|
|
num_bytes_needed_from_dma -= num_bytes_received_from_dma;
|
|
|
|
if ((self->io_mode == UASYNCIO) && (num_bytes_received_from_dma < num_bytes_requested_from_dma)) {
|
|
// Unable to fill the entire app buffer from DMA memory. This indicates all DMA RX buffers are empty.
|
|
// Clear the I2S event queue so ioctl() indicates that the I2S object cannot currently
|
|
// supply more audio samples
|
|
xQueueReset(self->i2s_event_queue);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return a_index;
|
|
}
|
|
|
|
STATIC uint32_t copy_appbuf_to_dma(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) {
|
|
if ((self->bits == I2S_BITS_PER_SAMPLE_32BIT) && (self->format == STEREO)) {
|
|
swap_32_bit_stereo_channels(appbuf);
|
|
}
|
|
|
|
uint32_t num_bytes_written = 0;
|
|
|
|
TickType_t delay;
|
|
if (self->io_mode == UASYNCIO) {
|
|
delay = 0; // stop i2s_write() operation if DMA memory becomes full
|
|
} else {
|
|
delay = portMAX_DELAY; // block until supplied buffer is emptied
|
|
}
|
|
|
|
check_esp_err(i2s_write(self->port, appbuf->buf, appbuf->len, &num_bytes_written, delay));
|
|
|
|
if ((self->io_mode == UASYNCIO) && (num_bytes_written < appbuf->len)) {
|
|
// Unable to empty the entire app buffer into DMA memory. This indicates all DMA TX buffers are full.
|
|
// Clear the I2S event queue so ioctl() indicates that the I2S object cannot currently
|
|
// accept more audio samples
|
|
xQueueReset(self->i2s_event_queue);
|
|
|
|
// Undo the swap transformation as the buffer has not been completely emptied.
|
|
// The uasyncio stream writer will use the same buffer in a future write call.
|
|
if ((self->bits == I2S_BITS_PER_SAMPLE_32BIT) && (self->format == STEREO)) {
|
|
swap_32_bit_stereo_channels(appbuf);
|
|
}
|
|
}
|
|
return num_bytes_written;
|
|
}
|
|
|
|
// FreeRTOS task used for non-blocking mode
|
|
STATIC void task_for_non_blocking_mode(void *self_in) {
|
|
machine_i2s_obj_t *self = (machine_i2s_obj_t *)self_in;
|
|
|
|
non_blocking_descriptor_t descriptor;
|
|
|
|
for (;;) {
|
|
if (xQueueReceive(self->non_blocking_mode_queue, &descriptor, portMAX_DELAY)) {
|
|
if (descriptor.direction == I2S_TX_TRANSFER) {
|
|
copy_appbuf_to_dma(self, &descriptor.appbuf);
|
|
} else { // RX
|
|
fill_appbuf_from_dma(self, &descriptor.appbuf);
|
|
}
|
|
mp_sched_schedule(descriptor.callback, MP_OBJ_FROM_PTR(self));
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC void machine_i2s_init_helper(machine_i2s_obj_t *self, size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
|
|
enum {
|
|
ARG_sck,
|
|
ARG_ws,
|
|
ARG_sd,
|
|
ARG_mode,
|
|
ARG_bits,
|
|
ARG_format,
|
|
ARG_rate,
|
|
ARG_ibuf,
|
|
};
|
|
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_ws, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_sd, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_format, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_rate, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_ibuf, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_pos_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
//
|
|
// ---- Check validity of arguments ----
|
|
//
|
|
|
|
// are Pins valid?
|
|
int8_t sck = args[ARG_sck].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_sck].u_obj);
|
|
int8_t ws = args[ARG_ws].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_ws].u_obj);
|
|
int8_t sd = args[ARG_sd].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_sd].u_obj);
|
|
|
|
// is Mode valid?
|
|
i2s_mode_t mode = args[ARG_mode].u_int;
|
|
if ((mode != (I2S_MODE_MASTER | I2S_MODE_RX)) &&
|
|
(mode != (I2S_MODE_MASTER | I2S_MODE_TX))) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid mode"));
|
|
}
|
|
|
|
// is Bits valid?
|
|
i2s_bits_per_sample_t bits = args[ARG_bits].u_int;
|
|
if ((bits != I2S_BITS_PER_SAMPLE_16BIT) &&
|
|
(bits != I2S_BITS_PER_SAMPLE_32BIT)) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid bits"));
|
|
}
|
|
|
|
// is Format valid?
|
|
format_t format = args[ARG_format].u_int;
|
|
if ((format != STEREO) &&
|
|
(format != MONO)) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid format"));
|
|
}
|
|
|
|
// is Rate valid?
|
|
// Not checked: ESP-IDF I2S API does not indicate a valid range for sample rate
|
|
|
|
// is Ibuf valid?
|
|
// Not checked: ESP-IDF I2S API will return error if requested buffer size exceeds available memory
|
|
|
|
self->sck = sck;
|
|
self->ws = ws;
|
|
self->sd = sd;
|
|
self->mode = mode;
|
|
self->bits = bits;
|
|
self->format = format;
|
|
self->rate = args[ARG_rate].u_int;
|
|
self->ibuf = args[ARG_ibuf].u_int;
|
|
self->callback_for_non_blocking = MP_OBJ_NULL;
|
|
self->i2s_event_queue = NULL;
|
|
self->non_blocking_mode_queue = NULL;
|
|
self->non_blocking_mode_task = NULL;
|
|
self->io_mode = BLOCKING;
|
|
|
|
i2s_config_t i2s_config;
|
|
i2s_config.communication_format = I2S_COMM_FORMAT_I2S;
|
|
i2s_config.mode = mode;
|
|
i2s_config.bits_per_sample = get_dma_bits(mode, bits);
|
|
i2s_config.channel_format = get_dma_format(mode, format);
|
|
i2s_config.sample_rate = self->rate;
|
|
i2s_config.intr_alloc_flags = ESP_INTR_FLAG_LOWMED;
|
|
i2s_config.dma_buf_count = get_dma_buf_count(mode, bits, format, self->ibuf);
|
|
i2s_config.dma_buf_len = DMA_BUF_LEN_IN_I2S_FRAMES;
|
|
i2s_config.use_apll = false;
|
|
|
|
// I2S queue size equals the number of DMA buffers
|
|
check_esp_err(i2s_driver_install(self->port, &i2s_config, i2s_config.dma_buf_count, &self->i2s_event_queue));
|
|
|
|
// apply low-level workaround for bug in some ESP-IDF versions that swap
|
|
// the left and right channels
|
|
// https://github.com/espressif/esp-idf/issues/6625
|
|
REG_SET_BIT(I2S_CONF_REG(self->port), I2S_TX_MSB_RIGHT);
|
|
REG_SET_BIT(I2S_CONF_REG(self->port), I2S_RX_MSB_RIGHT);
|
|
|
|
i2s_pin_config_t pin_config;
|
|
pin_config.bck_io_num = self->sck;
|
|
pin_config.ws_io_num = self->ws;
|
|
|
|
if (mode == (I2S_MODE_MASTER | I2S_MODE_RX)) {
|
|
pin_config.data_in_num = self->sd;
|
|
pin_config.data_out_num = -1;
|
|
} else { // TX
|
|
pin_config.data_in_num = -1;
|
|
pin_config.data_out_num = self->sd;
|
|
}
|
|
|
|
check_esp_err(i2s_set_pin(self->port, &pin_config));
|
|
}
|
|
|
|
STATIC void machine_i2s_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
|
|
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
mp_printf(print, "I2S(id=%u,\n"
|
|
"sck="MP_HAL_PIN_FMT ",\n"
|
|
"ws="MP_HAL_PIN_FMT ",\n"
|
|
"sd="MP_HAL_PIN_FMT ",\n"
|
|
"mode=%u,\n"
|
|
"bits=%u, format=%u,\n"
|
|
"rate=%d, ibuf=%d)",
|
|
self->port,
|
|
mp_hal_pin_name(self->sck),
|
|
mp_hal_pin_name(self->ws),
|
|
mp_hal_pin_name(self->sd),
|
|
self->mode,
|
|
self->bits, self->format,
|
|
self->rate, self->ibuf
|
|
);
|
|
}
|
|
|
|
STATIC mp_obj_t machine_i2s_make_new(const mp_obj_type_t *type, size_t n_pos_args, size_t n_kw_args, const mp_obj_t *args) {
|
|
mp_arg_check_num(n_pos_args, n_kw_args, 1, MP_OBJ_FUN_ARGS_MAX, true);
|
|
|
|
i2s_port_t port = mp_obj_get_int(args[0]);
|
|
if (port < 0 || port >= I2S_NUM_MAX) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid id"));
|
|
}
|
|
|
|
machine_i2s_obj_t *self;
|
|
if (machine_i2s_obj[port] == NULL) {
|
|
self = m_new_obj(machine_i2s_obj_t);
|
|
machine_i2s_obj[port] = self;
|
|
self->base.type = &machine_i2s_type;
|
|
self->port = port;
|
|
} else {
|
|
self = machine_i2s_obj[port];
|
|
machine_i2s_deinit(self);
|
|
}
|
|
|
|
mp_map_t kw_args;
|
|
mp_map_init_fixed_table(&kw_args, n_kw_args, args + n_pos_args);
|
|
machine_i2s_init_helper(self, n_pos_args - 1, args + 1, &kw_args);
|
|
|
|
return MP_OBJ_FROM_PTR(self);
|
|
}
|
|
|
|
STATIC mp_obj_t machine_i2s_obj_init(mp_uint_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
machine_i2s_obj_t *self = pos_args[0];
|
|
machine_i2s_deinit(self);
|
|
machine_i2s_init_helper(self, n_pos_args - 1, pos_args + 1, kw_args);
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2s_init_obj, 1, machine_i2s_obj_init);
|
|
|
|
STATIC mp_obj_t machine_i2s_deinit(mp_obj_t self_in) {
|
|
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
i2s_driver_uninstall(self->port);
|
|
|
|
if (self->non_blocking_mode_task != NULL) {
|
|
vTaskDelete(self->non_blocking_mode_task);
|
|
self->non_blocking_mode_task = NULL;
|
|
}
|
|
|
|
if (self->non_blocking_mode_queue != NULL) {
|
|
vQueueDelete(self->non_blocking_mode_queue);
|
|
self->non_blocking_mode_queue = NULL;
|
|
}
|
|
|
|
self->i2s_event_queue = NULL;
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_i2s_deinit_obj, machine_i2s_deinit);
|
|
|
|
STATIC mp_obj_t machine_i2s_irq(mp_obj_t self_in, mp_obj_t handler) {
|
|
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
if (handler != mp_const_none && !mp_obj_is_callable(handler)) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid callback"));
|
|
}
|
|
|
|
if (handler != mp_const_none) {
|
|
self->io_mode = NON_BLOCKING;
|
|
|
|
// create a queue linking the MicroPython task to a FreeRTOS task
|
|
// that manages the non blocking mode of operation
|
|
self->non_blocking_mode_queue = xQueueCreate(1, sizeof(non_blocking_descriptor_t));
|
|
|
|
// non-blocking mode requires a background FreeRTOS task
|
|
if (xTaskCreatePinnedToCore(
|
|
task_for_non_blocking_mode,
|
|
"i2s_non_blocking",
|
|
I2S_TASK_STACK_SIZE,
|
|
self,
|
|
I2S_TASK_PRIORITY,
|
|
(TaskHandle_t *)&self->non_blocking_mode_task,
|
|
MP_TASK_COREID) != pdPASS) {
|
|
|
|
mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("failed to create I2S task"));
|
|
}
|
|
} else {
|
|
if (self->non_blocking_mode_task != NULL) {
|
|
vTaskDelete(self->non_blocking_mode_task);
|
|
self->non_blocking_mode_task = NULL;
|
|
}
|
|
|
|
if (self->non_blocking_mode_queue != NULL) {
|
|
vQueueDelete(self->non_blocking_mode_queue);
|
|
self->non_blocking_mode_queue = NULL;
|
|
}
|
|
|
|
self->io_mode = BLOCKING;
|
|
}
|
|
|
|
self->callback_for_non_blocking = handler;
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_i2s_irq_obj, machine_i2s_irq);
|
|
|
|
// Shift() is typically used as a volume control.
|
|
// shift=1 increases volume by 6dB, shift=-1 decreases volume by 6dB
|
|
STATIC mp_obj_t machine_i2s_shift(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
enum { ARG_buf, ARG_bits, ARG_shift};
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_buf, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
|
|
{ MP_QSTR_bits, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_shift, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
|
|
};
|
|
|
|
// parse args
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
mp_buffer_info_t bufinfo;
|
|
mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_RW);
|
|
|
|
int16_t *buf_16 = bufinfo.buf;
|
|
int32_t *buf_32 = bufinfo.buf;
|
|
|
|
uint8_t bits = args[ARG_bits].u_int;
|
|
int8_t shift = args[ARG_shift].u_int;
|
|
|
|
uint32_t num_audio_samples;
|
|
switch (bits) {
|
|
case 16:
|
|
num_audio_samples = bufinfo.len / 2;
|
|
break;
|
|
|
|
case 32:
|
|
num_audio_samples = bufinfo.len / 4;
|
|
break;
|
|
|
|
default:
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid bits"));
|
|
break;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < num_audio_samples; i++) {
|
|
switch (bits) {
|
|
case 16:
|
|
if (shift >= 0) {
|
|
buf_16[i] = buf_16[i] << shift;
|
|
} else {
|
|
buf_16[i] = buf_16[i] >> abs(shift);
|
|
}
|
|
break;
|
|
case 32:
|
|
if (shift >= 0) {
|
|
buf_32[i] = buf_32[i] << shift;
|
|
} else {
|
|
buf_32[i] = buf_32[i] >> abs(shift);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2s_shift_fun_obj, 0, machine_i2s_shift);
|
|
STATIC MP_DEFINE_CONST_STATICMETHOD_OBJ(machine_i2s_shift_obj, MP_ROM_PTR(&machine_i2s_shift_fun_obj));
|
|
|
|
STATIC const mp_rom_map_elem_t machine_i2s_locals_dict_table[] = {
|
|
// Methods
|
|
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_i2s_init_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_i2s_deinit_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&machine_i2s_irq_obj) },
|
|
|
|
// Static method
|
|
{ MP_ROM_QSTR(MP_QSTR_shift), MP_ROM_PTR(&machine_i2s_shift_obj) },
|
|
|
|
// Constants
|
|
{ MP_ROM_QSTR(MP_QSTR_RX), MP_ROM_INT(I2S_MODE_MASTER | I2S_MODE_RX) },
|
|
{ MP_ROM_QSTR(MP_QSTR_TX), MP_ROM_INT(I2S_MODE_MASTER | I2S_MODE_TX) },
|
|
{ MP_ROM_QSTR(MP_QSTR_STEREO), MP_ROM_INT(STEREO) },
|
|
{ MP_ROM_QSTR(MP_QSTR_MONO), MP_ROM_INT(MONO) },
|
|
};
|
|
MP_DEFINE_CONST_DICT(machine_i2s_locals_dict, machine_i2s_locals_dict_table);
|
|
|
|
STATIC mp_uint_t machine_i2s_stream_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
|
|
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
|
|
if (self->mode != (I2S_MODE_MASTER | I2S_MODE_RX)) {
|
|
*errcode = MP_EPERM;
|
|
return MP_STREAM_ERROR;
|
|
}
|
|
|
|
uint8_t appbuf_sample_size_in_bytes = (self->bits / 8) * (self->format == STEREO ? 2: 1);
|
|
if (size % appbuf_sample_size_in_bytes != 0) {
|
|
*errcode = MP_EINVAL;
|
|
return MP_STREAM_ERROR;
|
|
}
|
|
|
|
if (size == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (self->io_mode == NON_BLOCKING) {
|
|
non_blocking_descriptor_t descriptor;
|
|
descriptor.appbuf.buf = (void *)buf_in;
|
|
descriptor.appbuf.len = size;
|
|
descriptor.callback = self->callback_for_non_blocking;
|
|
descriptor.direction = I2S_RX_TRANSFER;
|
|
// send the descriptor to the task that handles non-blocking mode
|
|
xQueueSend(self->non_blocking_mode_queue, &descriptor, 0);
|
|
return size;
|
|
} else { // blocking or uasyncio mode
|
|
mp_buffer_info_t appbuf;
|
|
appbuf.buf = (void *)buf_in;
|
|
appbuf.len = size;
|
|
uint32_t num_bytes_read = fill_appbuf_from_dma(self, &appbuf);
|
|
return num_bytes_read;
|
|
}
|
|
}
|
|
|
|
STATIC mp_uint_t machine_i2s_stream_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
|
|
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
|
|
if (self->mode != (I2S_MODE_MASTER | I2S_MODE_TX)) {
|
|
*errcode = MP_EPERM;
|
|
return MP_STREAM_ERROR;
|
|
}
|
|
|
|
if (size == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (self->io_mode == NON_BLOCKING) {
|
|
non_blocking_descriptor_t descriptor;
|
|
descriptor.appbuf.buf = (void *)buf_in;
|
|
descriptor.appbuf.len = size;
|
|
descriptor.callback = self->callback_for_non_blocking;
|
|
descriptor.direction = I2S_TX_TRANSFER;
|
|
// send the descriptor to the task that handles non-blocking mode
|
|
xQueueSend(self->non_blocking_mode_queue, &descriptor, 0);
|
|
return size;
|
|
} else { // blocking or uasyncio mode
|
|
mp_buffer_info_t appbuf;
|
|
appbuf.buf = (void *)buf_in;
|
|
appbuf.len = size;
|
|
uint32_t num_bytes_written = copy_appbuf_to_dma(self, &appbuf);
|
|
return num_bytes_written;
|
|
}
|
|
}
|
|
|
|
STATIC mp_uint_t machine_i2s_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) {
|
|
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
mp_uint_t ret;
|
|
mp_uint_t flags = arg;
|
|
self->io_mode = UASYNCIO; // a call to ioctl() is an indication that uasyncio is being used
|
|
|
|
if (request == MP_STREAM_POLL) {
|
|
ret = 0;
|
|
|
|
if (flags & MP_STREAM_POLL_RD) {
|
|
if (self->mode != (I2S_MODE_MASTER | I2S_MODE_RX)) {
|
|
*errcode = MP_EPERM;
|
|
return MP_STREAM_ERROR;
|
|
}
|
|
|
|
i2s_event_t i2s_event;
|
|
|
|
// check event queue to determine if a DMA buffer has been filled
|
|
// (which is an indication that at least one DMA buffer is available to be read)
|
|
// note: timeout = 0 so the call is non-blocking
|
|
if (xQueueReceive(self->i2s_event_queue, &i2s_event, 0)) {
|
|
if (i2s_event.type == I2S_EVENT_RX_DONE) {
|
|
// getting here means that at least one DMA buffer is now full
|
|
// indicating that audio samples can be read from the I2S object
|
|
ret |= MP_STREAM_POLL_RD;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (flags & MP_STREAM_POLL_WR) {
|
|
if (self->mode != (I2S_MODE_MASTER | I2S_MODE_TX)) {
|
|
*errcode = MP_EPERM;
|
|
return MP_STREAM_ERROR;
|
|
}
|
|
|
|
i2s_event_t i2s_event;
|
|
|
|
// check event queue to determine if a DMA buffer has been emptied
|
|
// (which is an indication that at least one DMA buffer is available to be written)
|
|
// note: timeout = 0 so the call is non-blocking
|
|
if (xQueueReceive(self->i2s_event_queue, &i2s_event, 0)) {
|
|
if (i2s_event.type == I2S_EVENT_TX_DONE) {
|
|
// getting here means that at least one DMA buffer is now empty
|
|
// indicating that audio samples can be written to the I2S object
|
|
ret |= MP_STREAM_POLL_WR;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
*errcode = MP_EINVAL;
|
|
ret = MP_STREAM_ERROR;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
STATIC const mp_stream_p_t i2s_stream_p = {
|
|
.read = machine_i2s_stream_read,
|
|
.write = machine_i2s_stream_write,
|
|
.ioctl = machine_i2s_ioctl,
|
|
.is_text = false,
|
|
};
|
|
|
|
const mp_obj_type_t machine_i2s_type = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_I2S,
|
|
.print = machine_i2s_print,
|
|
.getiter = mp_identity_getiter,
|
|
.iternext = mp_stream_unbuffered_iter,
|
|
.protocol = &i2s_stream_p,
|
|
.make_new = machine_i2s_make_new,
|
|
.locals_dict = (mp_obj_dict_t *)&machine_i2s_locals_dict,
|
|
};
|
|
|
|
#endif // MICROPY_PY_MACHINE_I2S
|