987 lines
34 KiB
C
987 lines
34 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2016-2017 Scott Shawcroft for Adafruit Industries
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "extmod/vfs.h"
|
|
#include "extmod/vfs_fat.h"
|
|
|
|
#include "genhdr/mpversion.h"
|
|
#include "py/nlr.h"
|
|
#include "py/compile.h"
|
|
#include "py/frozenmod.h"
|
|
#include "py/mphal.h"
|
|
#include "py/runtime.h"
|
|
#include "py/repl.h"
|
|
#include "py/gc.h"
|
|
#include "py/stackctrl.h"
|
|
|
|
#include "shared/readline/readline.h"
|
|
#include "shared/runtime/pyexec.h"
|
|
|
|
#include "background.h"
|
|
#include "mpconfigboard.h"
|
|
#include "supervisor/background_callback.h"
|
|
#include "supervisor/board.h"
|
|
#include "supervisor/cpu.h"
|
|
#include "supervisor/filesystem.h"
|
|
#include "supervisor/memory.h"
|
|
#include "supervisor/port.h"
|
|
#include "supervisor/serial.h"
|
|
#include "supervisor/shared/reload.h"
|
|
#include "supervisor/shared/safe_mode.h"
|
|
#include "supervisor/shared/stack.h"
|
|
#include "supervisor/shared/status_leds.h"
|
|
#include "supervisor/shared/tick.h"
|
|
#include "supervisor/shared/traceback.h"
|
|
#include "supervisor/shared/translate.h"
|
|
#include "supervisor/shared/workflow.h"
|
|
#include "supervisor/usb.h"
|
|
#include "supervisor/workflow.h"
|
|
|
|
#include "shared-bindings/microcontroller/__init__.h"
|
|
#include "shared-bindings/microcontroller/Processor.h"
|
|
#include "shared-bindings/supervisor/Runtime.h"
|
|
|
|
#if CIRCUITPY_ALARM
|
|
#include "shared-bindings/alarm/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_ATEXIT
|
|
#include "shared-module/atexit/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_BLEIO
|
|
#include "shared-bindings/_bleio/__init__.h"
|
|
#include "supervisor/shared/bluetooth/bluetooth.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_BOARD
|
|
#include "shared-module/board/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_CANIO
|
|
#include "common-hal/canio/CAN.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_DISPLAYIO
|
|
#include "shared-module/displayio/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_KEYPAD
|
|
#include "shared-module/keypad/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_MEMORYMONITOR
|
|
#include "shared-module/memorymonitor/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_USB_HID
|
|
#include "shared-module/usb_hid/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_WIFI
|
|
#include "shared-bindings/wifi/__init__.h"
|
|
#endif
|
|
|
|
#if CIRCUITPY_BOOT_COUNTER
|
|
#include "shared-bindings/nvm/ByteArray.h"
|
|
uint8_t value_out = 0;
|
|
#endif
|
|
|
|
#if MICROPY_ENABLE_PYSTACK
|
|
static size_t PLACE_IN_DTCM_BSS(_pystack[CIRCUITPY_PYSTACK_SIZE / sizeof(size_t)]);
|
|
#endif
|
|
|
|
static void reset_devices(void) {
|
|
#if CIRCUITPY_BLEIO_HCI
|
|
bleio_reset();
|
|
#endif
|
|
}
|
|
|
|
STATIC void start_mp(supervisor_allocation *heap, bool first_run) {
|
|
supervisor_workflow_reset();
|
|
|
|
// Stack limit should be less than real stack size, so we have a chance
|
|
// to recover from limit hit. (Limit is measured in bytes.)
|
|
mp_stack_ctrl_init();
|
|
|
|
if (stack_get_bottom() != NULL) {
|
|
mp_stack_set_limit(stack_get_length() - 1024);
|
|
}
|
|
|
|
|
|
#if MICROPY_MAX_STACK_USAGE
|
|
// _ezero (same as _ebss) is an int, so start 4 bytes above it.
|
|
if (stack_get_bottom() != NULL) {
|
|
mp_stack_set_bottom(stack_get_bottom());
|
|
mp_stack_fill_with_sentinel();
|
|
}
|
|
#endif
|
|
|
|
// Sync the file systems in case any used RAM from the GC to cache. As soon
|
|
// as we re-init the GC all bets are off on the cache.
|
|
filesystem_flush();
|
|
|
|
// Clear the readline history. It references the heap we're about to destroy.
|
|
readline_init0();
|
|
|
|
#if MICROPY_ENABLE_PYSTACK
|
|
mp_pystack_init(_pystack, _pystack + (sizeof(_pystack) / sizeof(size_t)));
|
|
#endif
|
|
|
|
#if MICROPY_ENABLE_GC
|
|
gc_init(heap->ptr, heap->ptr + get_allocation_length(heap) / 4);
|
|
#endif
|
|
mp_init();
|
|
mp_obj_list_init((mp_obj_list_t *)mp_sys_path, 0);
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_));
|
|
#if MICROPY_MODULE_FROZEN
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__dot_frozen));
|
|
#endif
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_lib));
|
|
|
|
mp_obj_list_init((mp_obj_list_t *)mp_sys_argv, 0);
|
|
|
|
#if CIRCUITPY_ALARM
|
|
// Record which alarm woke us up, if any. An object may be created so the heap must be functional.
|
|
// There is no alarm if this is not the first time code.py or the REPL has been run.
|
|
shared_alarm_save_wake_alarm(first_run ? common_hal_alarm_create_wake_alarm() : mp_const_none);
|
|
// Reset alarm module only after we retrieved the wakeup alarm.
|
|
alarm_reset();
|
|
#endif
|
|
}
|
|
|
|
STATIC void stop_mp(void) {
|
|
#if MICROPY_VFS
|
|
mp_vfs_mount_t *vfs = MP_STATE_VM(vfs_mount_table);
|
|
|
|
// Unmount all heap allocated vfs mounts.
|
|
while (gc_nbytes(vfs) > 0) {
|
|
vfs = vfs->next;
|
|
}
|
|
MP_STATE_VM(vfs_mount_table) = vfs;
|
|
MP_STATE_VM(vfs_cur) = vfs;
|
|
#endif
|
|
|
|
background_callback_reset();
|
|
|
|
#if CIRCUITPY_USB
|
|
usb_background();
|
|
#endif
|
|
|
|
gc_deinit();
|
|
}
|
|
|
|
#define STRING_LIST(...) {__VA_ARGS__, ""}
|
|
|
|
// Look for the first file that exists in the list of filenames, using mp_import_stat().
|
|
// Return its index. If no file found, return -1.
|
|
STATIC const char *first_existing_file_in_list(const char *const *filenames) {
|
|
for (int i = 0; filenames[i] != (char *)""; i++) {
|
|
mp_import_stat_t stat = mp_import_stat(filenames[i]);
|
|
if (stat == MP_IMPORT_STAT_FILE) {
|
|
return filenames[i];
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
STATIC bool maybe_run_list(const char *const *filenames, pyexec_result_t *exec_result) {
|
|
const char *filename = first_existing_file_in_list(filenames);
|
|
if (filename == NULL) {
|
|
return false;
|
|
}
|
|
mp_hal_stdout_tx_str(filename);
|
|
serial_write_compressed(translate(" output:\n"));
|
|
pyexec_file(filename, exec_result);
|
|
#if CIRCUITPY_ATEXIT
|
|
shared_module_atexit_execute(exec_result);
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
STATIC void count_strn(void *data, const char *str, size_t len) {
|
|
*(size_t *)data += len;
|
|
}
|
|
|
|
STATIC void cleanup_after_vm(supervisor_allocation *heap, mp_obj_t exception) {
|
|
// Get the traceback of any exception from this run off the heap.
|
|
// MP_OBJ_SENTINEL means "this run does not contribute to traceback storage, don't touch it"
|
|
// MP_OBJ_NULL (=0) means "this run completed successfully, clear any stored traceback"
|
|
if (exception != MP_OBJ_SENTINEL) {
|
|
free_memory(prev_traceback_allocation);
|
|
// ReloadException is exempt from traceback printing in pyexec_file(), so treat it as "no
|
|
// traceback" here too.
|
|
if (exception && exception != MP_OBJ_FROM_PTR(&MP_STATE_VM(mp_reload_exception))) {
|
|
size_t traceback_len = 0;
|
|
mp_print_t print_count = {&traceback_len, count_strn};
|
|
mp_obj_print_exception(&print_count, exception);
|
|
prev_traceback_allocation = allocate_memory(align32_size(traceback_len + 1), false, true);
|
|
// Empirically, this never fails in practice - even when the heap is totally filled up
|
|
// with single-block-sized objects referenced by a root pointer, exiting the VM frees
|
|
// up several hundred bytes, sufficient for the traceback (which tends to be shortened
|
|
// because there wasn't memory for the full one). There may be convoluted ways of
|
|
// making it fail, but at this point I believe they are not worth spending code on.
|
|
if (prev_traceback_allocation != NULL) {
|
|
vstr_t vstr;
|
|
vstr_init_fixed_buf(&vstr, traceback_len, (char *)prev_traceback_allocation->ptr);
|
|
mp_print_t print = {&vstr, (mp_print_strn_t)vstr_add_strn};
|
|
mp_obj_print_exception(&print, exception);
|
|
((char *)prev_traceback_allocation->ptr)[traceback_len] = '\0';
|
|
}
|
|
} else {
|
|
prev_traceback_allocation = NULL;
|
|
}
|
|
}
|
|
|
|
// Reset port-independent devices, like CIRCUITPY_BLEIO_HCI.
|
|
reset_devices();
|
|
|
|
#if CIRCUITPY_ATEXIT
|
|
atexit_reset();
|
|
#endif
|
|
|
|
// Turn off the display and flush the filesystem before the heap disappears.
|
|
#if CIRCUITPY_DISPLAYIO
|
|
reset_displays();
|
|
#endif
|
|
|
|
#if CIRCUITPY_MEMORYMONITOR
|
|
memorymonitor_reset();
|
|
#endif
|
|
|
|
filesystem_flush();
|
|
stop_mp();
|
|
free_memory(heap);
|
|
supervisor_move_memory();
|
|
|
|
#if CIRCUITPY_CANIO
|
|
common_hal_canio_reset();
|
|
#endif
|
|
|
|
#if CIRCUITPY_KEYPAD
|
|
keypad_reset();
|
|
#endif
|
|
|
|
// reset_board_buses() first because it may release pins from the never_reset state, so that
|
|
// reset_port() can reset them.
|
|
#if CIRCUITPY_BOARD
|
|
reset_board_buses();
|
|
#endif
|
|
reset_port();
|
|
reset_board();
|
|
}
|
|
|
|
STATIC void print_code_py_status_message(safe_mode_t safe_mode) {
|
|
if (autoreload_is_enabled()) {
|
|
serial_write_compressed(
|
|
translate("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\n"));
|
|
} else {
|
|
serial_write_compressed(translate("Auto-reload is off.\n"));
|
|
}
|
|
if (safe_mode != NO_SAFE_MODE) {
|
|
serial_write_compressed(translate("Running in safe mode! Not running saved code.\n"));
|
|
}
|
|
}
|
|
|
|
STATIC bool run_code_py(safe_mode_t safe_mode, bool first_run, bool *simulate_reset) {
|
|
bool serial_connected_at_start = serial_connected();
|
|
bool printed_safe_mode_message = false;
|
|
#if CIRCUITPY_AUTORELOAD_DELAY_MS > 0
|
|
if (serial_connected_at_start) {
|
|
serial_write("\r\n");
|
|
print_code_py_status_message(safe_mode);
|
|
print_safe_mode_message(safe_mode);
|
|
printed_safe_mode_message = true;
|
|
}
|
|
#endif
|
|
|
|
pyexec_result_t result;
|
|
|
|
result.return_code = 0;
|
|
result.exception = MP_OBJ_NULL;
|
|
result.exception_line = 0;
|
|
|
|
bool skip_repl = false;
|
|
bool skip_wait = false;
|
|
bool found_main = false;
|
|
uint8_t next_code_options = 0;
|
|
// Collects stickiness bits that apply in the current situation.
|
|
uint8_t next_code_stickiness_situation = SUPERVISOR_NEXT_CODE_OPT_NEWLY_SET;
|
|
|
|
// Do the filesystem flush check before reload in case another write comes
|
|
// in while we're doing the flush.
|
|
if (safe_mode == NO_SAFE_MODE) {
|
|
stack_resize();
|
|
filesystem_flush();
|
|
}
|
|
if (safe_mode == NO_SAFE_MODE && !autoreload_pending()) {
|
|
static const char *const supported_filenames[] = STRING_LIST(
|
|
"code.txt", "code.py", "main.py", "main.txt");
|
|
#if CIRCUITPY_FULL_BUILD
|
|
static const char *const double_extension_filenames[] = STRING_LIST(
|
|
"code.txt.py", "code.py.txt", "code.txt.txt","code.py.py",
|
|
"main.txt.py", "main.py.txt", "main.txt.txt","main.py.py");
|
|
#endif
|
|
|
|
supervisor_allocation *heap = allocate_remaining_memory();
|
|
|
|
// Prepare the VM state. Includes an alarm check/reset for sleep.
|
|
start_mp(heap, first_run);
|
|
|
|
#if CIRCUITPY_USB
|
|
usb_setup_with_vm();
|
|
#endif
|
|
|
|
// Check if a different run file has been allocated
|
|
if (next_code_allocation) {
|
|
((next_code_info_t *)next_code_allocation->ptr)->options &= ~SUPERVISOR_NEXT_CODE_OPT_NEWLY_SET;
|
|
next_code_options = ((next_code_info_t *)next_code_allocation->ptr)->options;
|
|
if (((next_code_info_t *)next_code_allocation->ptr)->filename[0] != '\0') {
|
|
const char *next_list[] = {((next_code_info_t *)next_code_allocation->ptr)->filename, ""};
|
|
// This is where the user's python code is actually executed:
|
|
found_main = maybe_run_list(next_list, &result);
|
|
if (!found_main) {
|
|
serial_write(((next_code_info_t *)next_code_allocation->ptr)->filename);
|
|
serial_write_compressed(translate(" not found.\n"));
|
|
}
|
|
}
|
|
}
|
|
// Otherwise, default to the standard list of filenames
|
|
if (!found_main) {
|
|
// This is where the user's python code is actually executed:
|
|
found_main = maybe_run_list(supported_filenames, &result);
|
|
// If that didn't work, double check the extensions
|
|
#if CIRCUITPY_FULL_BUILD
|
|
if (!found_main) {
|
|
found_main = maybe_run_list(double_extension_filenames, &result);
|
|
if (found_main) {
|
|
serial_write_compressed(translate("WARNING: Your code filename has two extensions\n"));
|
|
}
|
|
}
|
|
#else
|
|
(void)found_main;
|
|
#endif
|
|
}
|
|
|
|
// Print done before resetting everything so that we get the message over
|
|
// BLE before it is reset and we have a delay before reconnect.
|
|
if ((result.return_code & PYEXEC_RELOAD) && supervisor_get_run_reason() == RUN_REASON_AUTO_RELOAD) {
|
|
serial_write_compressed(translate("\nCode stopped by auto-reload. Reloading soon.\n"));
|
|
} else {
|
|
serial_write_compressed(translate("\nCode done running.\n"));
|
|
}
|
|
|
|
|
|
// Finished executing python code. Cleanup includes filesystem flush and a board reset.
|
|
cleanup_after_vm(heap, result.exception);
|
|
|
|
// If a new next code file was set, that is a reason to keep it (obviously). Stuff this into
|
|
// the options because it can be treated like any other reason-for-stickiness bit. The
|
|
// source is different though: it comes from the options that will apply to the next run,
|
|
// while the rest of next_code_options is what applied to this run.
|
|
if (next_code_allocation != NULL &&
|
|
(((next_code_info_t *)next_code_allocation->ptr)->options & SUPERVISOR_NEXT_CODE_OPT_NEWLY_SET)) {
|
|
next_code_options |= SUPERVISOR_NEXT_CODE_OPT_NEWLY_SET;
|
|
}
|
|
|
|
if (result.return_code & PYEXEC_RELOAD) {
|
|
next_code_stickiness_situation |= SUPERVISOR_NEXT_CODE_OPT_STICKY_ON_RELOAD;
|
|
// Reload immediately unless the reload is due to autoreload. In that
|
|
// case, we wait below to see if any other writes occur.
|
|
if (supervisor_get_run_reason() != RUN_REASON_AUTO_RELOAD) {
|
|
skip_repl = true;
|
|
skip_wait = true;
|
|
}
|
|
} else if (result.return_code == 0) {
|
|
next_code_stickiness_situation |= SUPERVISOR_NEXT_CODE_OPT_STICKY_ON_SUCCESS;
|
|
if (next_code_options & SUPERVISOR_NEXT_CODE_OPT_RELOAD_ON_SUCCESS) {
|
|
skip_repl = true;
|
|
skip_wait = true;
|
|
}
|
|
} else {
|
|
next_code_stickiness_situation |= SUPERVISOR_NEXT_CODE_OPT_STICKY_ON_ERROR;
|
|
// Deep sleep cannot be skipped
|
|
// TODO: settings in deep sleep should persist, using a new sleep memory API
|
|
if (next_code_options & SUPERVISOR_NEXT_CODE_OPT_RELOAD_ON_ERROR
|
|
&& !(result.return_code & PYEXEC_DEEP_SLEEP)) {
|
|
skip_repl = true;
|
|
skip_wait = true;
|
|
}
|
|
}
|
|
if (result.return_code & PYEXEC_FORCED_EXIT) {
|
|
skip_repl = false;
|
|
skip_wait = true;
|
|
}
|
|
}
|
|
|
|
// Program has finished running.
|
|
bool printed_press_any_key = false;
|
|
#if CIRCUITPY_DISPLAYIO
|
|
size_t time_to_epaper_refresh = 1;
|
|
#endif
|
|
|
|
// Setup LED blinks.
|
|
#if CIRCUITPY_STATUS_LED
|
|
uint32_t color;
|
|
uint8_t blink_count;
|
|
bool led_active = false;
|
|
#if CIRCUITPY_ALARM
|
|
if (result.return_code & PYEXEC_DEEP_SLEEP) {
|
|
color = BLACK;
|
|
blink_count = 0;
|
|
} else
|
|
#endif
|
|
if (result.return_code != PYEXEC_EXCEPTION) {
|
|
if (safe_mode == NO_SAFE_MODE) {
|
|
color = ALL_DONE;
|
|
blink_count = ALL_DONE_BLINKS;
|
|
} else {
|
|
color = SAFE_MODE;
|
|
blink_count = SAFE_MODE_BLINKS;
|
|
}
|
|
} else {
|
|
color = EXCEPTION;
|
|
blink_count = EXCEPTION_BLINKS;
|
|
}
|
|
size_t pattern_start = supervisor_ticks_ms32();
|
|
size_t single_blink_time = (OFF_ON_RATIO + 1) * BLINK_TIME_MS;
|
|
size_t blink_time = single_blink_time * blink_count;
|
|
size_t total_time = blink_time + LED_SLEEP_TIME_MS;
|
|
#endif
|
|
|
|
// This loop is waits after code completes. It waits for fake sleeps to
|
|
// finish, user input or autoreloads.
|
|
#if CIRCUITPY_ALARM
|
|
bool fake_sleeping = false;
|
|
#endif
|
|
while (!skip_wait) {
|
|
RUN_BACKGROUND_TASKS;
|
|
|
|
// If a reload was requested by the supervisor or autoreload, return.
|
|
if (autoreload_ready()) {
|
|
next_code_stickiness_situation |= SUPERVISOR_NEXT_CODE_OPT_STICKY_ON_RELOAD;
|
|
// Should the STICKY_ON_SUCCESS and STICKY_ON_ERROR bits be cleared in
|
|
// next_code_stickiness_situation? I can see arguments either way, but I'm deciding
|
|
// "no" for now, mainly because it's a bit less code. At this point, we have both a
|
|
// success or error and a reload, so let's have both of the respective options take
|
|
// effect (in OR combination).
|
|
skip_repl = true;
|
|
// We're kicking off the autoreload process so reset now. If any
|
|
// other reloads trigger after this, then we'll want another wait
|
|
// period.
|
|
autoreload_reset();
|
|
break;
|
|
}
|
|
|
|
// If interrupted by keyboard, return
|
|
if (serial_connected() && serial_bytes_available()) {
|
|
// Skip REPL if reload was requested.
|
|
skip_repl = serial_read() == CHAR_CTRL_D;
|
|
if (skip_repl) {
|
|
supervisor_set_run_reason(RUN_REASON_REPL_RELOAD);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Check for a deep sleep alarm and restart the VM. This can happen if
|
|
// an alarm alerts faster than our USB delay or if we pretended to deep
|
|
// sleep.
|
|
#if CIRCUITPY_ALARM
|
|
if (fake_sleeping && common_hal_alarm_woken_from_sleep()) {
|
|
serial_write_compressed(translate("Woken up by alarm.\n"));
|
|
supervisor_set_run_reason(RUN_REASON_STARTUP);
|
|
skip_repl = true;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
// If messages haven't been printed yet, print them
|
|
if (!printed_press_any_key && serial_connected() && !autoreload_pending()) {
|
|
if (!serial_connected_at_start) {
|
|
print_code_py_status_message(safe_mode);
|
|
}
|
|
|
|
if (!printed_safe_mode_message) {
|
|
print_safe_mode_message(safe_mode);
|
|
printed_safe_mode_message = true;
|
|
}
|
|
serial_write("\r\n");
|
|
serial_write_compressed(translate("Press any key to enter the REPL. Use CTRL-D to reload.\n"));
|
|
printed_press_any_key = true;
|
|
}
|
|
if (!serial_connected()) {
|
|
serial_connected_at_start = false;
|
|
printed_press_any_key = false;
|
|
}
|
|
|
|
// Sleep until our next interrupt.
|
|
#if CIRCUITPY_ALARM
|
|
if (result.return_code & PYEXEC_DEEP_SLEEP) {
|
|
const bool awoke_from_true_deep_sleep =
|
|
common_hal_mcu_processor_get_reset_reason() == RESET_REASON_DEEP_SLEEP_ALARM;
|
|
|
|
if (fake_sleeping) {
|
|
// This waits until a pretend deep sleep alarm occurs. They are set
|
|
// during common_hal_alarm_set_deep_sleep_alarms. On some platforms
|
|
// it may also return due to another interrupt, that's why we check
|
|
// for deep sleep alarms above. If it wasn't a deep sleep alarm,
|
|
// then we'll idle here again.
|
|
common_hal_alarm_pretending_deep_sleep();
|
|
}
|
|
// The first time we go into a deep sleep, make sure we have been awake long enough
|
|
// for USB to connect (enumeration delay), or for the BLE workflow to start.
|
|
// We wait CIRCUITPY_WORKFLOW_CONNECTION_SLEEP_DELAY seconds after a restart.
|
|
// But if we woke up from a real deep sleep, don't wait for connection. The user will need to
|
|
// do a hard reset to get out of the real deep sleep.
|
|
else if (awoke_from_true_deep_sleep ||
|
|
port_get_raw_ticks(NULL) > CIRCUITPY_WORKFLOW_CONNECTION_SLEEP_DELAY * 1024) {
|
|
// OK to start sleeping, real or fake.
|
|
status_led_deinit();
|
|
deinit_rxtx_leds();
|
|
board_deinit();
|
|
|
|
// Continue with true deep sleep even if workflow is available.
|
|
if (awoke_from_true_deep_sleep || !supervisor_workflow_active()) {
|
|
// Enter true deep sleep. When we wake up we'll be back at the
|
|
// top of main(), not in this loop.
|
|
common_hal_alarm_enter_deep_sleep();
|
|
// Does not return.
|
|
} else {
|
|
serial_write_compressed(
|
|
translate("Pretending to deep sleep until alarm, CTRL-C or file write.\n"));
|
|
fake_sleeping = true;
|
|
}
|
|
} else {
|
|
// Loop while checking the time. We can't idle because we don't want to override a
|
|
// time alarm set for the deep sleep.
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
// Refresh the ePaper display if we have one. That way it'll show an error message.
|
|
#if CIRCUITPY_DISPLAYIO
|
|
if (time_to_epaper_refresh > 0) {
|
|
time_to_epaper_refresh = maybe_refresh_epaperdisplay();
|
|
}
|
|
|
|
#if !CIRCUITPY_STATUS_LED
|
|
port_interrupt_after_ticks(time_to_epaper_refresh);
|
|
#endif
|
|
#endif
|
|
|
|
#if CIRCUITPY_STATUS_LED
|
|
uint32_t tick_diff = supervisor_ticks_ms32() - pattern_start;
|
|
|
|
// By default, don't sleep.
|
|
size_t time_to_next_change = 0;
|
|
if (tick_diff < blink_time) {
|
|
uint32_t blink_diff = tick_diff % (single_blink_time);
|
|
if (blink_diff >= BLINK_TIME_MS) {
|
|
if (led_active) {
|
|
new_status_color(BLACK);
|
|
status_led_deinit();
|
|
led_active = false;
|
|
}
|
|
time_to_next_change = single_blink_time - blink_diff;
|
|
} else {
|
|
if (!led_active) {
|
|
status_led_init();
|
|
new_status_color(color);
|
|
led_active = true;
|
|
}
|
|
time_to_next_change = BLINK_TIME_MS - blink_diff;
|
|
}
|
|
} else if (tick_diff > total_time) {
|
|
pattern_start = supervisor_ticks_ms32();
|
|
} else {
|
|
if (led_active) {
|
|
new_status_color(BLACK);
|
|
status_led_deinit();
|
|
led_active = false;
|
|
}
|
|
time_to_next_change = total_time - tick_diff;
|
|
}
|
|
#if CIRCUITPY_DISPLAYIO
|
|
if (time_to_epaper_refresh > 0 && time_to_next_change > 0) {
|
|
time_to_next_change = MIN(time_to_next_change, time_to_epaper_refresh);
|
|
}
|
|
#endif
|
|
|
|
// time_to_next_change is in ms and ticks are slightly shorter so
|
|
// we'll undersleep just a little. It shouldn't matter.
|
|
port_interrupt_after_ticks(time_to_next_change);
|
|
#endif
|
|
port_idle_until_interrupt();
|
|
}
|
|
}
|
|
|
|
// Done waiting, start the board back up.
|
|
|
|
// free code allocation if unused
|
|
if ((next_code_options & next_code_stickiness_situation) == 0) {
|
|
free_memory(next_code_allocation);
|
|
next_code_allocation = NULL;
|
|
}
|
|
|
|
#if CIRCUITPY_STATUS_LED
|
|
if (led_active) {
|
|
new_status_color(BLACK);
|
|
status_led_deinit();
|
|
}
|
|
#endif
|
|
|
|
#if CIRCUITPY_ALARM
|
|
if (fake_sleeping) {
|
|
board_init();
|
|
// Pretend that the next run is the first run, as if we were reset.
|
|
*simulate_reset = true;
|
|
}
|
|
#endif
|
|
|
|
return skip_repl;
|
|
}
|
|
|
|
vstr_t *boot_output;
|
|
|
|
STATIC void __attribute__ ((noinline)) run_boot_py(safe_mode_t safe_mode) {
|
|
// If not in safe mode, run boot before initing USB and capture output in a file.
|
|
|
|
// There is USB setup to do even if boot.py is not actually run.
|
|
const bool ok_to_run = filesystem_present()
|
|
&& safe_mode == NO_SAFE_MODE
|
|
&& MP_STATE_VM(vfs_mount_table) != NULL;
|
|
|
|
static const char *const boot_py_filenames[] = STRING_LIST("boot.py", "boot.txt");
|
|
|
|
// Do USB setup even if boot.py is not run.
|
|
|
|
supervisor_allocation *heap = allocate_remaining_memory();
|
|
|
|
// true means this is the first set of VM's after a hard reset.
|
|
start_mp(heap, true);
|
|
|
|
#if CIRCUITPY_USB
|
|
// Set up default USB values after boot.py VM starts but before running boot.py.
|
|
usb_set_defaults();
|
|
#endif
|
|
|
|
pyexec_result_t result = {0, MP_OBJ_NULL, 0};
|
|
|
|
if (ok_to_run) {
|
|
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
|
|
vstr_t boot_text;
|
|
vstr_init(&boot_text, 512);
|
|
boot_output = &boot_text;
|
|
#endif
|
|
|
|
// Write version info
|
|
mp_printf(&mp_plat_print, "%s\nBoard ID:%s\n", MICROPY_FULL_VERSION_INFO, CIRCUITPY_BOARD_ID);
|
|
|
|
bool found_boot = maybe_run_list(boot_py_filenames, &result);
|
|
(void)found_boot;
|
|
|
|
|
|
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
|
|
// Get the base filesystem.
|
|
fs_user_mount_t *vfs = (fs_user_mount_t *)MP_STATE_VM(vfs_mount_table)->obj;
|
|
FATFS *fs = &vfs->fatfs;
|
|
|
|
boot_output = NULL;
|
|
bool write_boot_output = true;
|
|
FIL boot_output_file;
|
|
if (f_open(fs, &boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_READ) == FR_OK) {
|
|
char *file_contents = m_new(char, boot_text.alloc);
|
|
UINT chars_read;
|
|
if (f_read(&boot_output_file, file_contents, 1 + boot_text.len, &chars_read) == FR_OK) {
|
|
write_boot_output =
|
|
(chars_read != boot_text.len) || (memcmp(boot_text.buf, file_contents, chars_read) != 0);
|
|
}
|
|
// no need to f_close the file
|
|
}
|
|
|
|
if (write_boot_output) {
|
|
// Wait 1 second before opening CIRCUITPY_BOOT_OUTPUT_FILE for write,
|
|
// in case power is momentary or will fail shortly due to, say a low, battery.
|
|
mp_hal_delay_ms(1000);
|
|
|
|
// USB isn't up, so we can write the file.
|
|
// operating at the oofatfs (f_open) layer means the usb concurrent write permission
|
|
// is not even checked!
|
|
f_open(fs, &boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_WRITE | FA_CREATE_ALWAYS);
|
|
UINT chars_written;
|
|
f_write(&boot_output_file, boot_text.buf, boot_text.len, &chars_written);
|
|
f_close(&boot_output_file);
|
|
filesystem_flush();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if CIRCUITPY_USB
|
|
// Some data needs to be carried over from the USB settings in boot.py
|
|
// to the next VM, while the heap is still available.
|
|
// Its size can vary, so save it temporarily on the stack,
|
|
// and then when the heap goes away, copy it in into a
|
|
// storage_allocation.
|
|
size_t size = usb_boot_py_data_size();
|
|
uint8_t usb_boot_py_data[size];
|
|
usb_get_boot_py_data(usb_boot_py_data, size);
|
|
#endif
|
|
|
|
cleanup_after_vm(heap, result.exception);
|
|
|
|
#if CIRCUITPY_USB
|
|
// Now give back the data we saved from the heap going away.
|
|
usb_return_boot_py_data(usb_boot_py_data, size);
|
|
#endif
|
|
}
|
|
|
|
STATIC int run_repl(bool first_run) {
|
|
int exit_code = PYEXEC_FORCED_EXIT;
|
|
stack_resize();
|
|
filesystem_flush();
|
|
supervisor_allocation *heap = allocate_remaining_memory();
|
|
start_mp(heap, first_run);
|
|
|
|
#if CIRCUITPY_USB
|
|
usb_setup_with_vm();
|
|
#endif
|
|
|
|
autoreload_suspend(AUTORELOAD_SUSPEND_REPL);
|
|
|
|
// Set the status LED to the REPL color before running the REPL. For
|
|
// NeoPixels and DotStars this will be sticky but for PWM or single LED it
|
|
// won't. This simplifies pin sharing because they won't be in use when
|
|
// actually in the REPL.
|
|
#if CIRCUITPY_STATUS_LED
|
|
status_led_init();
|
|
new_status_color(REPL_RUNNING);
|
|
status_led_deinit();
|
|
#endif
|
|
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
|
|
exit_code = pyexec_raw_repl();
|
|
} else {
|
|
exit_code = pyexec_friendly_repl();
|
|
}
|
|
#if CIRCUITPY_ATEXIT
|
|
pyexec_result_t result;
|
|
shared_module_atexit_execute(&result);
|
|
if (result.return_code == PYEXEC_DEEP_SLEEP) {
|
|
exit_code = PYEXEC_DEEP_SLEEP;
|
|
}
|
|
#endif
|
|
cleanup_after_vm(heap, MP_OBJ_SENTINEL);
|
|
#if CIRCUITPY_STATUS_LED
|
|
status_led_init();
|
|
new_status_color(BLACK);
|
|
status_led_deinit();
|
|
#endif
|
|
|
|
autoreload_resume(AUTORELOAD_SUSPEND_REPL);
|
|
return exit_code;
|
|
}
|
|
|
|
int __attribute__((used)) main(void) {
|
|
// initialise the cpu and peripherals
|
|
safe_mode_t safe_mode = port_init();
|
|
|
|
// Turn on RX and TX LEDs if we have them.
|
|
init_rxtx_leds();
|
|
|
|
#if CIRCUITPY_BOOT_COUNTER
|
|
// Increment counter before possibly entering safe mode
|
|
common_hal_nvm_bytearray_get_bytes(&common_hal_mcu_nvm_obj,0,1,&value_out);
|
|
++value_out;
|
|
common_hal_nvm_bytearray_set_bytes(&common_hal_mcu_nvm_obj,0,&value_out,1);
|
|
#endif
|
|
|
|
// Wait briefly to give a reset window where we'll enter safe mode after the reset.
|
|
if (safe_mode == NO_SAFE_MODE) {
|
|
safe_mode = wait_for_safe_mode_reset();
|
|
}
|
|
|
|
stack_init();
|
|
|
|
#if CIRCUITPY_BLEIO
|
|
// Early init so that a reset press can cause BLE public advertising.
|
|
supervisor_bluetooth_init();
|
|
#endif
|
|
|
|
// Start the debug serial
|
|
serial_early_init();
|
|
|
|
#if CIRCUITPY_EXTERNAL_FLASH_SETUP
|
|
// Set up anything that might need to get done before we try to use SPI flash
|
|
// This is needed for some boards where flash relies on GPIO setup to work
|
|
external_flash_setup();
|
|
#endif
|
|
|
|
// Create a new filesystem only if we're not in a safe mode.
|
|
// A power brownout here could make it appear as if there's
|
|
// no SPI flash filesystem, and we might erase the existing one.
|
|
|
|
// Check whether CIRCUITPY is available. No need to reset to get safe mode
|
|
// since we haven't run user code yet.
|
|
if (!filesystem_init(safe_mode == NO_SAFE_MODE, false)) {
|
|
safe_mode = NO_CIRCUITPY;
|
|
}
|
|
|
|
// displays init after filesystem, since they could share the flash SPI
|
|
board_init();
|
|
|
|
// Reset everything and prep MicroPython to run boot.py.
|
|
reset_port();
|
|
// Port-independent devices, like CIRCUITPY_BLEIO_HCI.
|
|
reset_devices();
|
|
reset_board();
|
|
|
|
// This is first time we are running CircuitPython after a reset or power-up.
|
|
supervisor_set_run_reason(RUN_REASON_STARTUP);
|
|
|
|
// If not in safe mode turn on autoreload by default but before boot.py in case it wants to change it.
|
|
if (safe_mode == NO_SAFE_MODE) {
|
|
autoreload_enable();
|
|
}
|
|
|
|
// By default our internal flash is readonly to local python code and
|
|
// writable over USB. Set it here so that boot.py can change it.
|
|
filesystem_set_internal_concurrent_write_protection(true);
|
|
filesystem_set_internal_writable_by_usb(CIRCUITPY_USB == 1);
|
|
|
|
run_boot_py(safe_mode);
|
|
|
|
// Start USB after giving boot.py a chance to tweak behavior.
|
|
#if CIRCUITPY_USB
|
|
// Setup USB connection after heap is available.
|
|
// It needs the heap to build descriptors.
|
|
usb_init();
|
|
#endif
|
|
|
|
// Set up any other serial connection.
|
|
serial_init();
|
|
|
|
#if CIRCUITPY_BLEIO
|
|
supervisor_bluetooth_enable_workflow();
|
|
supervisor_start_bluetooth();
|
|
#endif
|
|
|
|
// Boot script is finished, so now go into REPL or run code.py.
|
|
int exit_code = PYEXEC_FORCED_EXIT;
|
|
bool skip_repl = true;
|
|
bool first_run = true;
|
|
bool simulate_reset;
|
|
for (;;) {
|
|
simulate_reset = false;
|
|
if (!skip_repl) {
|
|
exit_code = run_repl(first_run);
|
|
supervisor_set_run_reason(RUN_REASON_REPL_RELOAD);
|
|
}
|
|
if (exit_code == PYEXEC_FORCED_EXIT) {
|
|
if (!first_run) {
|
|
serial_write_compressed(translate("soft reboot\n"));
|
|
}
|
|
if (pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
|
|
skip_repl = run_code_py(safe_mode, first_run, &simulate_reset);
|
|
} else {
|
|
skip_repl = false;
|
|
}
|
|
} else if (exit_code != 0) {
|
|
break;
|
|
}
|
|
|
|
// Either the REPL or code.py has run and finished.
|
|
// If code.py did a fake deep sleep, pretend that we are running code.py for
|
|
// the first time after a hard reset. This will preserve any alarm information.
|
|
first_run = simulate_reset;
|
|
}
|
|
mp_deinit();
|
|
return 0;
|
|
}
|
|
|
|
void gc_collect(void) {
|
|
gc_collect_start();
|
|
|
|
mp_uint_t regs[10];
|
|
mp_uint_t sp = cpu_get_regs_and_sp(regs);
|
|
|
|
// This collects root pointers from the VFS mount table. Some of them may
|
|
// have lost their references in the VM even though they are mounted.
|
|
gc_collect_root((void **)&MP_STATE_VM(vfs_mount_table), sizeof(mp_vfs_mount_t) / sizeof(mp_uint_t));
|
|
|
|
background_callback_gc_collect();
|
|
|
|
#if CIRCUITPY_ALARM
|
|
common_hal_alarm_gc_collect();
|
|
#endif
|
|
|
|
#if CIRCUITPY_ATEXIT
|
|
atexit_gc_collect();
|
|
#endif
|
|
|
|
#if CIRCUITPY_DISPLAYIO
|
|
displayio_gc_collect();
|
|
#endif
|
|
|
|
#if CIRCUITPY_BLEIO
|
|
common_hal_bleio_gc_collect();
|
|
#endif
|
|
|
|
#if CIRCUITPY_USB_HID
|
|
usb_hid_gc_collect();
|
|
#endif
|
|
|
|
#if CIRCUITPY_WIFI
|
|
common_hal_wifi_gc_collect();
|
|
#endif
|
|
|
|
// This naively collects all object references from an approximate stack
|
|
// range.
|
|
gc_collect_root((void **)sp, ((mp_uint_t)port_stack_get_top() - sp) / sizeof(mp_uint_t));
|
|
gc_collect_end();
|
|
}
|
|
|
|
void NORETURN nlr_jump_fail(void *val) {
|
|
reset_into_safe_mode(MICROPY_NLR_JUMP_FAIL);
|
|
while (true) {
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static void NORETURN __fatal_error(const char *msg) {
|
|
reset_into_safe_mode(MICROPY_FATAL_ERROR);
|
|
while (true) {
|
|
}
|
|
}
|
|
|
|
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
|
|
mp_printf(&mp_plat_print, "Assertion '%s' failed, at file %s:%d\n", expr, file, line);
|
|
__fatal_error("Assertion failed");
|
|
}
|
|
#endif
|