547 lines
18 KiB
C
547 lines
18 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2018 Michael Schroeder
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "shared-bindings/frequencyio/FrequencyIn.h"
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "hal/include/hal_gpio.h"
|
|
#include "atmel_start_pins.h"
|
|
|
|
#include "mpconfigport.h"
|
|
#include "py/runtime.h"
|
|
#include "timer_handler.h"
|
|
#include "background.h"
|
|
|
|
#include "samd/clocks.h"
|
|
#include "samd/timers.h"
|
|
#include "samd/events.h"
|
|
#include "samd/pins.h"
|
|
#include "samd/external_interrupts.h"
|
|
|
|
#include "peripheral_clk_config.h"
|
|
#include "hpl_gclk_config.h"
|
|
|
|
#include "shared-bindings/time/__init__.h"
|
|
#include "supervisor/shared/translate.h"
|
|
|
|
#ifdef SAMD21
|
|
#include "hpl/gclk/hpl_gclk_base.h"
|
|
#endif
|
|
|
|
static frequencyio_frequencyin_obj_t *active_frequencyins[TC_INST_NUM];
|
|
volatile uint8_t reference_tc = 0xff;
|
|
#ifdef SAMD51
|
|
static uint8_t dpll_gclk;
|
|
#endif
|
|
|
|
void frequencyin_emergency_cancel_capture(uint8_t index) {
|
|
frequencyio_frequencyin_obj_t* self = active_frequencyins[index];
|
|
|
|
NVIC_DisableIRQ(self->TC_IRQ);
|
|
NVIC_ClearPendingIRQ(self->TC_IRQ);
|
|
#ifdef SAMD21
|
|
NVIC_DisableIRQ(EIC_IRQn);
|
|
NVIC_ClearPendingIRQ(EIC_IRQn);
|
|
#endif
|
|
#ifdef SAMD51
|
|
NVIC_DisableIRQ(EIC_0_IRQn + self->channel);
|
|
NVIC_ClearPendingIRQ(EIC_0_IRQn + self->channel);
|
|
#endif
|
|
|
|
common_hal_frequencyio_frequencyin_pause(self); // pause any further captures
|
|
|
|
NVIC_EnableIRQ(self->TC_IRQ);
|
|
#ifdef SAMD21
|
|
NVIC_EnableIRQ(EIC_IRQn);
|
|
#endif
|
|
#ifdef SAMD51
|
|
NVIC_EnableIRQ(EIC_0_IRQn + self->channel);
|
|
#endif
|
|
mp_raise_RuntimeError(translate("Frequency captured is above capability. Capture Paused."));
|
|
}
|
|
|
|
void frequencyin_interrupt_handler(uint8_t index) {
|
|
Tc* ref_tc = tc_insts[reference_tc];
|
|
|
|
if (!ref_tc->COUNT16.INTFLAG.bit.OVF) return; // false trigger
|
|
|
|
uint64_t current_ns = common_hal_time_monotonic_ns();
|
|
|
|
for (uint8_t i = 0; i <= (TC_INST_NUM - 1); i++) {
|
|
if (active_frequencyins[i] != NULL) {
|
|
frequencyio_frequencyin_obj_t* self = active_frequencyins[i];
|
|
Tc* tc = tc_insts[self->tc_index];
|
|
|
|
uint32_t mask = 1 << self->channel;
|
|
if ((EIC->INTFLAG.reg & mask) == mask) {
|
|
// Make sure capture_period has elapsed before we
|
|
// record a new event count.
|
|
if ((current_ns - self->last_ns) / 1000000 >= self->capture_period) {
|
|
// ms difference will not need 64 bits. If we use 64 bits,
|
|
// double-precision float routines are required, and we don't
|
|
// want to include them because they're very large.
|
|
self->factor = (uint32_t) (current_ns - self->last_ns) / 1000000.0;
|
|
self->last_ns = current_ns;
|
|
|
|
#ifdef SAMD51
|
|
tc->COUNT16.CTRLBSET.bit.CMD = TC_CTRLBSET_CMD_READSYNC_Val;
|
|
while ((tc->COUNT16.SYNCBUSY.bit.COUNT == 1) ||
|
|
(tc->COUNT16.CTRLBSET.bit.CMD == TC_CTRLBSET_CMD_READSYNC_Val)) {
|
|
}
|
|
#endif
|
|
|
|
uint16_t new_freq = tc->COUNT16.COUNT.reg;
|
|
if ((tc->COUNT16.INTFLAG.reg & TC_INTFLAG_OVF) == 1) {
|
|
new_freq += 65535;
|
|
tc->COUNT16.INTFLAG.reg |= TC_INTFLAG_OVF;
|
|
}
|
|
self->frequency = new_freq;
|
|
|
|
#ifdef SAMD51
|
|
tc->COUNT16.CTRLBSET.bit.CMD = TC_CTRLBSET_CMD_RETRIGGER_Val;
|
|
while ((tc->COUNT16.SYNCBUSY.bit.COUNT == 1) ||
|
|
(tc->COUNT16.CTRLBSET.bit.CMD == TC_CTRLBSET_CMD_RETRIGGER_Val)) {
|
|
}
|
|
#endif
|
|
}
|
|
EIC->INTFLAG.reg |= mask;
|
|
}
|
|
|
|
// Check if we've reached the upper limit of detection
|
|
if (!background_tasks_ok() || self->errored_too_fast) {
|
|
self->errored_too_fast = true;
|
|
frequencyin_emergency_cancel_capture(i);
|
|
}
|
|
}
|
|
}
|
|
ref_tc->COUNT16.INTFLAG.reg |= TC_INTFLAG_OVF;
|
|
}
|
|
|
|
void frequencyin_reference_tc_init() {
|
|
if (reference_tc == 0xff) {
|
|
return;
|
|
}
|
|
#ifdef SAMD21
|
|
set_timer_handler(true, reference_tc, TC_HANDLER_FREQUENCYIN);
|
|
turn_on_clocks(true, reference_tc, 0);
|
|
#endif
|
|
// use the DPLL we setup so that the reference_tc and freqin_tc(s)
|
|
// are using the same clock frequency.
|
|
#ifdef SAMD51
|
|
if (dpll_gclk == 0xff) {
|
|
frequencyin_samd51_start_dpll();
|
|
}
|
|
set_timer_handler(true, reference_tc, TC_HANDLER_FREQUENCYIN);
|
|
turn_on_clocks(true, reference_tc, dpll_gclk);
|
|
#endif
|
|
|
|
Tc *tc = tc_insts[reference_tc];
|
|
tc_set_enable(tc, false);
|
|
tc_reset(tc);
|
|
|
|
#ifdef SAMD21
|
|
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 | TC_CTRLA_PRESCALER_DIV1;
|
|
tc->COUNT16.INTENSET.bit.OVF = 1;
|
|
NVIC_EnableIRQ(TC3_IRQn + reference_tc);
|
|
#endif
|
|
#ifdef SAMD51
|
|
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 |
|
|
TC_CTRLA_PRESCALER_DIV1;
|
|
tc->COUNT16.INTENSET.bit.OVF = 1;
|
|
NVIC_EnableIRQ(TC0_IRQn + reference_tc);
|
|
#endif
|
|
}
|
|
|
|
bool frequencyin_reference_tc_enabled() {
|
|
if (reference_tc == 0xff) {
|
|
return false;
|
|
}
|
|
Tc *tc = tc_insts[reference_tc];
|
|
return tc->COUNT16.CTRLA.bit.ENABLE;
|
|
}
|
|
|
|
void frequencyin_reference_tc_enable(bool enable) {
|
|
if (reference_tc == 0xff) {
|
|
return;
|
|
}
|
|
Tc *tc = tc_insts[reference_tc];
|
|
tc_set_enable(tc, enable);
|
|
}
|
|
|
|
#ifdef SAMD51
|
|
void frequencyin_samd51_start_dpll() {
|
|
if (clock_get_enabled(0, GCLK_SOURCE_DPLL1)) {
|
|
return;
|
|
}
|
|
|
|
uint8_t free_gclk = find_free_gclk(1);
|
|
if (free_gclk == 0xff) {
|
|
dpll_gclk = 0xff;
|
|
return;
|
|
}
|
|
|
|
GCLK->PCHCTRL[OSCCTRL_GCLK_ID_FDPLL1].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN(free_gclk);
|
|
// TC4-7 can only have a max of 100MHz source
|
|
// DPLL1 frequency equation with [X]OSC32K as source: 98.304MHz = 32768(2999 + 1 + 0/32)
|
|
// Will also enable the Lock Bypass due to low-frequency sources causing DPLL unlocks
|
|
// as outlined in the Errata (1.12.1)
|
|
OSCCTRL->Dpll[1].DPLLRATIO.reg = OSCCTRL_DPLLRATIO_LDRFRAC(0) | OSCCTRL_DPLLRATIO_LDR(2999);
|
|
#if BOARD_HAS_CRYSTAL
|
|
// we can use XOSC32K directly as the source
|
|
OSC32KCTRL->XOSC32K.bit.EN32K = 1;
|
|
OSCCTRL->Dpll[1].DPLLCTRLB.reg = OSCCTRL_DPLLCTRLB_REFCLK(1) | OSCCTRL_DPLLCTRLB_LBYPASS;
|
|
#else
|
|
// can't use OSCULP32K directly; need to setup a GCLK as a reference,
|
|
// which must be done in samd/clocks.c to avoid waiting for sync
|
|
return;
|
|
//OSC32KCTRL->OSCULP32K.bit.EN32K = 1;
|
|
//OSCCTRL->Dpll[1].DPLLCTRLB.reg = OSCCTRL_DPLLCTRLB_REFCLK(0);
|
|
#endif
|
|
OSCCTRL->Dpll[1].DPLLCTRLA.reg = OSCCTRL_DPLLCTRLA_ENABLE;
|
|
|
|
while (!(OSCCTRL->Dpll[1].DPLLSTATUS.bit.LOCK || OSCCTRL->Dpll[1].DPLLSTATUS.bit.CLKRDY)) {}
|
|
enable_clock_generator(free_gclk, GCLK_GENCTRL_SRC_DPLL1_Val, 1);
|
|
dpll_gclk = free_gclk;
|
|
}
|
|
|
|
void frequencyin_samd51_stop_dpll() {
|
|
if (!clock_get_enabled(0, GCLK_SOURCE_DPLL1)) {
|
|
return;
|
|
}
|
|
|
|
disable_clock_generator(dpll_gclk);
|
|
|
|
GCLK->PCHCTRL[OSCCTRL_GCLK_ID_FDPLL1].reg = 0;
|
|
OSCCTRL->Dpll[1].DPLLCTRLA.reg = 0;
|
|
OSCCTRL->Dpll[1].DPLLRATIO.reg = 0;
|
|
OSCCTRL->Dpll[1].DPLLCTRLB.reg = 0;
|
|
|
|
while (OSCCTRL->Dpll[1].DPLLSYNCBUSY.bit.ENABLE) {
|
|
}
|
|
dpll_gclk = 0xff;
|
|
}
|
|
#endif
|
|
|
|
void common_hal_frequencyio_frequencyin_construct(frequencyio_frequencyin_obj_t* self, const mcu_pin_obj_t* pin, const uint16_t capture_period) {
|
|
|
|
if (!pin->has_extint) {
|
|
mp_raise_RuntimeError(translate("No hardware support on pin"));
|
|
}
|
|
if ((capture_period == 0) || (capture_period > 500)) {
|
|
mp_raise_ValueError(translate("Invalid capture period. Valid range: 1 - 500"));
|
|
}
|
|
uint32_t mask = 1 << pin->extint_channel;
|
|
if (eic_get_enable() == 1 &&
|
|
#ifdef SAMD21
|
|
((EIC->INTENSET.vec.EXTINT & mask) != 0 || (EIC->EVCTRL.vec.EXTINTEO & mask) != 0)) {
|
|
#endif
|
|
#ifdef SAMD51
|
|
((EIC->INTENSET.bit.EXTINT & mask) != 0 || (EIC->EVCTRL.bit.EXTINTEO & mask) != 0)) {
|
|
#endif
|
|
mp_raise_RuntimeError(translate("EXTINT channel already in use"));
|
|
}
|
|
|
|
uint8_t timer_index = find_free_timer();
|
|
if (timer_index == 0xff) {
|
|
mp_raise_RuntimeError(translate("All timers in use"));
|
|
}
|
|
Tc *tc = tc_insts[timer_index];
|
|
|
|
self->tc_index = timer_index;
|
|
self->pin = pin->number;
|
|
self->channel = pin->extint_channel;
|
|
self->errored_too_fast = false;
|
|
self->last_ns = 0;
|
|
self->capture_period = capture_period;
|
|
#ifdef SAMD21
|
|
self->TC_IRQ = TC3_IRQn + timer_index;
|
|
#endif
|
|
#ifdef SAMD51
|
|
self->TC_IRQ = TC0_IRQn + timer_index;
|
|
#endif
|
|
|
|
active_frequencyins[timer_index] = self;
|
|
|
|
// SAMD21: We use GCLK0 generated from DFLL running at 48mhz
|
|
// SAMD51: We use a GCLK generated from DPLL1 running at <100mhz
|
|
#ifdef SAMD21
|
|
set_timer_handler(timer_index, 0, TC_HANDLER_NO_INTERRUPT);
|
|
turn_on_clocks(true, timer_index, 0);
|
|
#endif
|
|
#ifdef SAMD51
|
|
frequencyin_samd51_start_dpll();
|
|
if (dpll_gclk == 0xff && !clock_get_enabled(0, GCLK_SOURCE_DPLL1)) {
|
|
common_hal_frequencyio_frequencyin_deinit(self);
|
|
mp_raise_RuntimeError(translate("No available clocks"));
|
|
}
|
|
set_timer_handler(timer_index, dpll_gclk, TC_HANDLER_NO_INTERRUPT);
|
|
turn_on_clocks(true, timer_index, dpll_gclk);
|
|
#endif
|
|
|
|
// Ensure EIC is on
|
|
if (eic_get_enable() == 0) {
|
|
turn_on_external_interrupt_controller(); // enables EIC, so disable it after
|
|
}
|
|
eic_set_enable(false);
|
|
|
|
uint8_t sense_setting = EIC_CONFIG_SENSE0_HIGH_Val;
|
|
uint8_t config_index = self->channel / 8;
|
|
uint8_t position = (self->channel % 8) * 4;
|
|
uint32_t masked_value = EIC->CONFIG[config_index].reg & ~(0xf << position);
|
|
EIC->CONFIG[config_index].reg = masked_value | (sense_setting << position);
|
|
|
|
#ifdef SAMD21
|
|
masked_value = EIC->EVCTRL.vec.EXTINTEO;
|
|
EIC->EVCTRL.vec.EXTINTEO = masked_value | (1 << self->channel);
|
|
#endif
|
|
#ifdef SAMD51
|
|
masked_value = EIC->EVCTRL.bit.EXTINTEO;
|
|
EIC->EVCTRL.bit.EXTINTEO = masked_value | (1 << self->channel);
|
|
EIC->ASYNCH.bit.ASYNCH = 1;
|
|
#endif
|
|
|
|
turn_on_cpu_interrupt(self->channel);
|
|
|
|
eic_set_enable(true);
|
|
|
|
// Turn on EVSYS
|
|
turn_on_event_system();
|
|
uint8_t evsys_channel = find_async_event_channel();
|
|
#ifdef SAMD21
|
|
connect_event_user_to_channel((EVSYS_ID_USER_TC3_EVU + timer_index), evsys_channel);
|
|
#endif
|
|
#ifdef SAMD51
|
|
connect_event_user_to_channel((EVSYS_ID_USER_TC0_EVU + timer_index), evsys_channel);
|
|
#endif
|
|
init_async_event_channel(evsys_channel, (EVSYS_ID_GEN_EIC_EXTINT_0 + self->channel));
|
|
self->event_channel = evsys_channel;
|
|
|
|
tc_set_enable(tc, false);
|
|
tc_reset(tc);
|
|
#ifdef SAMD21
|
|
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 |
|
|
TC_CTRLA_PRESCALER_DIV1;
|
|
tc->COUNT16.EVCTRL.bit.TCEI = 1;
|
|
tc->COUNT16.EVCTRL.bit.EVACT = TC_EVCTRL_EVACT_COUNT_Val;
|
|
#endif
|
|
|
|
#ifdef SAMD51
|
|
tc->COUNT16.EVCTRL.reg = TC_EVCTRL_EVACT(TC_EVCTRL_EVACT_COUNT_Val) | TC_EVCTRL_TCEI;
|
|
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16 |
|
|
TC_CTRLA_PRESCALER_DIV1;
|
|
#endif
|
|
|
|
NVIC_EnableIRQ(self->TC_IRQ);
|
|
|
|
gpio_set_pin_function(pin->number, GPIO_PIN_FUNCTION_A);
|
|
|
|
tc_set_enable(tc, true);
|
|
|
|
// setup reference TC if not already
|
|
if (reference_tc == 0xff) {
|
|
reference_tc = find_free_timer();
|
|
if (reference_tc == 0xff) {
|
|
common_hal_frequencyio_frequencyin_deinit(self);
|
|
mp_raise_RuntimeError(translate("All timers in use"));
|
|
}
|
|
frequencyin_reference_tc_init();
|
|
}
|
|
if (!frequencyin_reference_tc_enabled()) {
|
|
frequencyin_reference_tc_enable(true);
|
|
}
|
|
}
|
|
|
|
bool common_hal_frequencyio_frequencyin_deinited(frequencyio_frequencyin_obj_t* self) {
|
|
return self->pin == NO_PIN;
|
|
}
|
|
|
|
void common_hal_frequencyio_frequencyin_deinit(frequencyio_frequencyin_obj_t* self) {
|
|
if (common_hal_frequencyio_frequencyin_deinited(self)) {
|
|
return;
|
|
}
|
|
reset_pin_number(self->pin);
|
|
|
|
// turn off EIC & EVSYS utilized by this TC
|
|
disable_event_channel(self->event_channel);
|
|
eic_set_enable(false);
|
|
#ifdef SAMD21
|
|
disable_event_user(EVSYS_ID_USER_TC3_EVU + self->tc_index);
|
|
uint32_t masked_value = EIC->EVCTRL.vec.EXTINTEO;
|
|
EIC->EVCTRL.vec.EXTINTEO = masked_value ^ (1 << self->channel);
|
|
#endif
|
|
#ifdef SAMD51
|
|
disable_event_user(EVSYS_ID_USER_TC0_EVU + self->tc_index);
|
|
uint32_t masked_value = EIC->EVCTRL.bit.EXTINTEO;
|
|
EIC->EVCTRL.bit.EXTINTEO = masked_value ^ (1 << self->channel);
|
|
NVIC_DisableIRQ(EIC_0_IRQn + self->channel);
|
|
NVIC_ClearPendingIRQ(EIC_0_IRQn + self->channel);
|
|
#endif
|
|
eic_set_enable(true);
|
|
// check if any other objects are using the EIC; if not, turn it off
|
|
if (EIC->EVCTRL.reg == 0 && EIC->INTENSET.reg == 0) {
|
|
eic_reset();
|
|
turn_off_external_interrupt_controller();
|
|
}
|
|
|
|
// turn off the TC we were using
|
|
Tc *tc = tc_insts[self->tc_index];
|
|
tc_set_enable(tc, false);
|
|
tc_reset(tc);
|
|
NVIC_DisableIRQ(self->TC_IRQ);
|
|
NVIC_ClearPendingIRQ(self->TC_IRQ);
|
|
|
|
active_frequencyins[self->tc_index] = NULL;
|
|
self->tc_index = 0xff;
|
|
self->pin = NO_PIN;
|
|
|
|
bool check_active = false;
|
|
for (uint8_t i = 0; i <= (TC_INST_NUM - 1); i++) {
|
|
if (active_frequencyins[i] != NULL) {
|
|
check_active = true;
|
|
}
|
|
}
|
|
if (!check_active) {
|
|
frequencyin_reference_tc_enable(false);
|
|
reference_tc = 0xff;
|
|
#ifdef SAMD51
|
|
frequencyin_samd51_stop_dpll();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
uint32_t common_hal_frequencyio_frequencyin_get_item(frequencyio_frequencyin_obj_t* self) {
|
|
NVIC_DisableIRQ(self->TC_IRQ);
|
|
#ifdef SAMD21
|
|
NVIC_DisableIRQ(EIC_IRQn);
|
|
#endif
|
|
#ifdef SAMD51
|
|
NVIC_DisableIRQ(EIC_0_IRQn + self->channel);
|
|
#endif
|
|
|
|
// adjust for actual capture period vs base `capture_period`
|
|
float frequency_adjustment = 0.0;
|
|
if (self->factor > self->capture_period) {
|
|
float time_each_event = self->factor / self->frequency; // get the time for each event during actual period
|
|
float capture_diff = self->factor - self->capture_period; // get the difference of actual and base periods
|
|
// we only need to adjust if the capture_diff can contain 1 or more events
|
|
// if so, we add how many events could have occured during the diff time
|
|
if (time_each_event > capture_diff) {
|
|
frequency_adjustment = capture_diff / time_each_event;
|
|
}
|
|
}
|
|
|
|
float value = 1000 / (self->capture_period / (self->frequency + frequency_adjustment));
|
|
|
|
NVIC_ClearPendingIRQ(self->TC_IRQ);
|
|
NVIC_EnableIRQ(self->TC_IRQ);
|
|
#ifdef SAMD21
|
|
NVIC_ClearPendingIRQ(EIC_IRQn);
|
|
NVIC_EnableIRQ(EIC_IRQn);
|
|
#endif
|
|
#ifdef SAMD51
|
|
NVIC_ClearPendingIRQ(EIC_0_IRQn + self->channel);
|
|
NVIC_EnableIRQ(EIC_0_IRQn + self->channel);
|
|
#endif
|
|
|
|
return value;
|
|
}
|
|
|
|
void common_hal_frequencyio_frequencyin_pause(frequencyio_frequencyin_obj_t* self) {
|
|
Tc *tc = tc_insts[self->tc_index];
|
|
if (!tc->COUNT16.EVCTRL.bit.TCEI) {
|
|
return;
|
|
}
|
|
tc->COUNT16.EVCTRL.bit.TCEI = 0;
|
|
|
|
#ifdef SAMD21
|
|
uint32_t masked_value = EIC->EVCTRL.vec.EXTINTEO;
|
|
EIC->EVCTRL.vec.EXTINTEO = masked_value ^ (1 << self->channel);
|
|
#endif
|
|
#ifdef SAMD51
|
|
uint32_t masked_value = EIC->EVCTRL.bit.EXTINTEO;
|
|
EIC->EVCTRL.bit.EXTINTEO = masked_value ^ (1 << self->channel);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
void common_hal_frequencyio_frequencyin_resume(frequencyio_frequencyin_obj_t* self) {
|
|
Tc *tc = tc_insts[self->tc_index];
|
|
if (tc->COUNT16.EVCTRL.bit.TCEI) {
|
|
return;
|
|
}
|
|
tc->COUNT16.EVCTRL.bit.TCEI = 1;
|
|
|
|
#ifdef SAMD21
|
|
uint32_t masked_value = EIC->EVCTRL.vec.EXTINTEO;
|
|
EIC->EVCTRL.vec.EXTINTEO = masked_value | (1 << self->channel);
|
|
#endif
|
|
#ifdef SAMD51
|
|
uint32_t masked_value = EIC->EVCTRL.bit.EXTINTEO;
|
|
EIC->EVCTRL.bit.EXTINTEO = masked_value | (1 << self->channel);
|
|
#endif
|
|
self->errored_too_fast = false;
|
|
return;
|
|
}
|
|
|
|
void common_hal_frequencyio_frequencyin_clear(frequencyio_frequencyin_obj_t* self) {
|
|
NVIC_DisableIRQ(self->TC_IRQ);
|
|
#ifdef SAMD21
|
|
NVIC_DisableIRQ(EIC_IRQn);
|
|
#endif
|
|
#ifdef SAMD51
|
|
NVIC_DisableIRQ(EIC_0_IRQn + self->channel);
|
|
#endif
|
|
|
|
self->frequency = 0;
|
|
|
|
NVIC_ClearPendingIRQ(self->TC_IRQ);
|
|
NVIC_EnableIRQ(self->TC_IRQ);
|
|
#ifdef SAMD21
|
|
NVIC_ClearPendingIRQ(EIC_IRQn);
|
|
NVIC_EnableIRQ(EIC_IRQn);
|
|
#endif
|
|
#ifdef SAMD51
|
|
NVIC_ClearPendingIRQ(EIC_0_IRQn + self->channel);
|
|
NVIC_EnableIRQ(EIC_0_IRQn + self->channel);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
uint16_t common_hal_frequencyio_frequencyin_get_capture_period(frequencyio_frequencyin_obj_t *self) {
|
|
return self->capture_period;
|
|
}
|
|
|
|
void common_hal_frequencyio_frequencyin_set_capture_period(frequencyio_frequencyin_obj_t *self, uint16_t capture_period) {
|
|
if ((capture_period == 0) || (capture_period > 500)) {
|
|
mp_raise_ValueError(translate("Invalid capture period. Valid range: 1 - 500"));
|
|
}
|
|
|
|
self->capture_period = capture_period;
|
|
|
|
common_hal_frequencyio_frequencyin_clear(self);
|
|
}
|