circuitpython/ports/stm32/lcd.c
Damien George 2dca693c24 stm32: Change pin_X and pyb_pin_X identifiers to be pointers to objects.
Rather than pin objects themselves.  The actual object is now pin_X_obj and
defines are provided so that pin_X is &pin_X_obj.  This makes it so that
code that uses pin objects doesn't need to know if they are literals or
objects (that need pointers taken) or something else.  They are just
entities that can be passed to the map_hal_pin_xxx functions.  This mirrors
how the core handles constant objects (eg mp_const_none which is
&mp_const_none_obj) and allows for the possibility of different
implementations of the pin layer.

For example, prior to this patch there was the following:

    extern const pin_obj_t pin_A0;
    #define pyb_pin_X1 pin_A0
    ...
    mp_hal_pin_high(&pin_A0);

and now there is:

    extern const pin_obj_t pin_A0_obj;
    #define pin_A0 (&pin_A0_obj)
    #define pyb_pin_X1 pin_A0
    ...
    mp_hal_pin_high(pin_A0);

This patch should have minimal effect on board configuration files.  The
only change that may be needed is if a board has .c files that configure
pins.
2018-03-28 16:29:50 +11:00

528 lines
19 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/mphal.h"
#include "py/runtime.h"
#if MICROPY_HW_HAS_LCD
#include "pin.h"
#include "bufhelper.h"
#include "spi.h"
#include "font_petme128_8x8.h"
#include "lcd.h"
/// \moduleref pyb
/// \class LCD - LCD control for the LCD touch-sensor pyskin
///
/// The LCD class is used to control the LCD on the LCD touch-sensor pyskin,
/// LCD32MKv1.0. The LCD is a 128x32 pixel monochrome screen, part NHD-C12832A1Z.
///
/// The pyskin must be connected in either the X or Y positions, and then
/// an LCD object is made using:
///
/// lcd = pyb.LCD('X') # if pyskin is in the X position
/// lcd = pyb.LCD('Y') # if pyskin is in the Y position
///
/// Then you can use:
///
/// lcd.light(True) # turn the backlight on
/// lcd.write('Hello world!\n') # print text to the screen
///
/// This driver implements a double buffer for setting/getting pixels.
/// For example, to make a bouncing dot, try:
///
/// x = y = 0
/// dx = dy = 1
/// while True:
/// # update the dot's position
/// x += dx
/// y += dy
///
/// # make the dot bounce of the edges of the screen
/// if x <= 0 or x >= 127: dx = -dx
/// if y <= 0 or y >= 31: dy = -dy
///
/// lcd.fill(0) # clear the buffer
/// lcd.pixel(x, y, 1) # draw the dot
/// lcd.show() # show the buffer
/// pyb.delay(50) # pause for 50ms
#define LCD_INSTR (0)
#define LCD_DATA (1)
#define LCD_CHAR_BUF_W (16)
#define LCD_CHAR_BUF_H (4)
#define LCD_PIX_BUF_W (128)
#define LCD_PIX_BUF_H (32)
#define LCD_PIX_BUF_BYTE_SIZE (LCD_PIX_BUF_W * LCD_PIX_BUF_H / 8)
typedef struct _pyb_lcd_obj_t {
mp_obj_base_t base;
// hardware control for the LCD
const spi_t *spi;
const pin_obj_t *pin_cs1;
const pin_obj_t *pin_rst;
const pin_obj_t *pin_a0;
const pin_obj_t *pin_bl;
// character buffer for stdout-like output
char char_buffer[LCD_CHAR_BUF_W * LCD_CHAR_BUF_H];
int line;
int column;
int next_line;
// double buffering for pixel buffer
byte pix_buf[LCD_PIX_BUF_BYTE_SIZE];
byte pix_buf2[LCD_PIX_BUF_BYTE_SIZE];
} pyb_lcd_obj_t;
STATIC void lcd_delay(void) {
__asm volatile ("nop\nnop");
}
STATIC void lcd_out(pyb_lcd_obj_t *lcd, int instr_data, uint8_t i) {
lcd_delay();
mp_hal_pin_low(lcd->pin_cs1); // CS=0; enable
if (instr_data == LCD_INSTR) {
mp_hal_pin_low(lcd->pin_a0); // A0=0; select instr reg
} else {
mp_hal_pin_high(lcd->pin_a0); // A0=1; select data reg
}
lcd_delay();
HAL_SPI_Transmit(lcd->spi->spi, &i, 1, 1000);
lcd_delay();
mp_hal_pin_high(lcd->pin_cs1); // CS=1; disable
}
// write a string to the LCD at the current cursor location
// output it straight away (doesn't use the pixel buffer)
STATIC void lcd_write_strn(pyb_lcd_obj_t *lcd, const char *str, unsigned int len) {
int redraw_min = lcd->line * LCD_CHAR_BUF_W + lcd->column;
int redraw_max = redraw_min;
for (; len > 0; len--, str++) {
// move to next line if needed
if (lcd->next_line) {
if (lcd->line + 1 < LCD_CHAR_BUF_H) {
lcd->line += 1;
} else {
lcd->line = LCD_CHAR_BUF_H - 1;
for (int i = 0; i < LCD_CHAR_BUF_W * (LCD_CHAR_BUF_H - 1); i++) {
lcd->char_buffer[i] = lcd->char_buffer[i + LCD_CHAR_BUF_W];
}
for (int i = 0; i < LCD_CHAR_BUF_W; i++) {
lcd->char_buffer[LCD_CHAR_BUF_W * (LCD_CHAR_BUF_H - 1) + i] = ' ';
}
redraw_min = 0;
redraw_max = LCD_CHAR_BUF_W * LCD_CHAR_BUF_H;
}
lcd->next_line = 0;
lcd->column = 0;
}
if (*str == '\n') {
lcd->next_line = 1;
} else if (*str == '\r') {
lcd->column = 0;
} else if (*str == '\b') {
if (lcd->column > 0) {
lcd->column--;
redraw_min = 0; // could optimise this to not redraw everything
}
} else if (lcd->column >= LCD_CHAR_BUF_W) {
lcd->next_line = 1;
str -= 1;
len += 1;
} else {
lcd->char_buffer[lcd->line * LCD_CHAR_BUF_W + lcd->column] = *str;
lcd->column += 1;
int max = lcd->line * LCD_CHAR_BUF_W + lcd->column;
if (max > redraw_max) {
redraw_max = max;
}
}
}
// we must draw upside down, because the LCD is upside down
for (int i = redraw_min; i < redraw_max; i++) {
uint page = i / LCD_CHAR_BUF_W;
uint offset = 8 * (LCD_CHAR_BUF_W - 1 - (i - (page * LCD_CHAR_BUF_W)));
lcd_out(lcd, LCD_INSTR, 0xb0 | page); // page address set
lcd_out(lcd, LCD_INSTR, 0x10 | ((offset >> 4) & 0x0f)); // column address set upper
lcd_out(lcd, LCD_INSTR, 0x00 | (offset & 0x0f)); // column address set lower
int chr = lcd->char_buffer[i];
if (chr < 32 || chr > 126) {
chr = 127;
}
const uint8_t *chr_data = &font_petme128_8x8[(chr - 32) * 8];
for (int j = 7; j >= 0; j--) {
lcd_out(lcd, LCD_DATA, chr_data[j]);
}
}
}
/// \classmethod \constructor(skin_position)
///
/// Construct an LCD object in the given skin position. `skin_position` can be 'X' or 'Y', and
/// should match the position where the LCD pyskin is plugged in.
STATIC mp_obj_t pyb_lcd_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, 1, false);
// get LCD position
const char *lcd_id = mp_obj_str_get_str(args[0]);
// create lcd object
pyb_lcd_obj_t *lcd = m_new_obj(pyb_lcd_obj_t);
lcd->base.type = &pyb_lcd_type;
// configure pins
// TODO accept an SPI object and pin objects for full customisation
if ((lcd_id[0] | 0x20) == 'x' && lcd_id[1] == '\0') {
lcd->spi = &spi_obj[0];
lcd->pin_cs1 = pyb_pin_X3;
lcd->pin_rst = pyb_pin_X4;
lcd->pin_a0 = pyb_pin_X5;
lcd->pin_bl = pyb_pin_X12;
} else if ((lcd_id[0] | 0x20) == 'y' && lcd_id[1] == '\0') {
lcd->spi = &spi_obj[1];
lcd->pin_cs1 = pyb_pin_Y3;
lcd->pin_rst = pyb_pin_Y4;
lcd->pin_a0 = pyb_pin_Y5;
lcd->pin_bl = pyb_pin_Y12;
} else {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "LCD(%s) doesn't exist", lcd_id));
}
// init the SPI bus
SPI_InitTypeDef *init = &lcd->spi->spi->Init;
init->Mode = SPI_MODE_MASTER;
// compute the baudrate prescaler from the desired baudrate
// select a prescaler that yields at most the desired baudrate
uint spi_clock;
if (lcd->spi->spi->Instance == SPI1) {
// SPI1 is on APB2
spi_clock = HAL_RCC_GetPCLK2Freq();
} else {
// SPI2 and SPI3 are on APB1
spi_clock = HAL_RCC_GetPCLK1Freq();
}
uint br_prescale = spi_clock / 16000000; // datasheet says LCD can run at 20MHz, but we go for 16MHz
if (br_prescale <= 2) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; }
else if (br_prescale <= 4) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4; }
else if (br_prescale <= 8) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; }
else if (br_prescale <= 16) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16; }
else if (br_prescale <= 32) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32; }
else if (br_prescale <= 64) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64; }
else if (br_prescale <= 128) { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128; }
else { init->BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; }
// data is sent bigendian, latches on rising clock
init->CLKPolarity = SPI_POLARITY_HIGH;
init->CLKPhase = SPI_PHASE_2EDGE;
init->Direction = SPI_DIRECTION_2LINES;
init->DataSize = SPI_DATASIZE_8BIT;
init->NSS = SPI_NSS_SOFT;
init->FirstBit = SPI_FIRSTBIT_MSB;
init->TIMode = SPI_TIMODE_DISABLED;
init->CRCCalculation = SPI_CRCCALCULATION_DISABLED;
init->CRCPolynomial = 0;
// init the SPI bus
spi_init(lcd->spi, false);
// set the pins to default values
mp_hal_pin_high(lcd->pin_cs1);
mp_hal_pin_high(lcd->pin_rst);
mp_hal_pin_high(lcd->pin_a0);
mp_hal_pin_low(lcd->pin_bl);
// init the pins to be push/pull outputs
mp_hal_pin_output(lcd->pin_cs1);
mp_hal_pin_output(lcd->pin_rst);
mp_hal_pin_output(lcd->pin_a0);
mp_hal_pin_output(lcd->pin_bl);
// init the LCD
mp_hal_delay_ms(1); // wait a bit
mp_hal_pin_low(lcd->pin_rst); // RST=0; reset
mp_hal_delay_ms(1); // wait for reset; 2us min
mp_hal_pin_high(lcd->pin_rst); // RST=1; enable
mp_hal_delay_ms(1); // wait for reset; 2us min
lcd_out(lcd, LCD_INSTR, 0xa0); // ADC select, normal
lcd_out(lcd, LCD_INSTR, 0xc0); // common output mode select, normal (this flips the display)
lcd_out(lcd, LCD_INSTR, 0xa2); // LCD bias set, 1/9 bias
lcd_out(lcd, LCD_INSTR, 0x2f); // power control set, 0b111=(booster on, vreg on, vfollow on)
lcd_out(lcd, LCD_INSTR, 0x21); // v0 voltage regulator internal resistor ratio set, 0b001=small
lcd_out(lcd, LCD_INSTR, 0x81); // electronic volume mode set
lcd_out(lcd, LCD_INSTR, 0x28); // electronic volume register set
lcd_out(lcd, LCD_INSTR, 0x40); // display start line set, 0
lcd_out(lcd, LCD_INSTR, 0xaf); // LCD display, on
// clear LCD RAM
for (int page = 0; page < 4; page++) {
lcd_out(lcd, LCD_INSTR, 0xb0 | page); // page address set
lcd_out(lcd, LCD_INSTR, 0x10); // column address set upper
lcd_out(lcd, LCD_INSTR, 0x00); // column address set lower
for (int i = 0; i < 128; i++) {
lcd_out(lcd, LCD_DATA, 0x00);
}
}
// clear local char buffer
memset(lcd->char_buffer, ' ', LCD_CHAR_BUF_H * LCD_CHAR_BUF_W);
lcd->line = 0;
lcd->column = 0;
lcd->next_line = 0;
// clear local pixel buffer
memset(lcd->pix_buf, 0, LCD_PIX_BUF_BYTE_SIZE);
memset(lcd->pix_buf2, 0, LCD_PIX_BUF_BYTE_SIZE);
return lcd;
}
/// \method command(instr_data, buf)
///
/// Send an arbitrary command to the LCD. Pass 0 for `instr_data` to send an
/// instruction, otherwise pass 1 to send data. `buf` is a buffer with the
/// instructions/data to send.
STATIC mp_obj_t pyb_lcd_command(mp_obj_t self_in, mp_obj_t instr_data_in, mp_obj_t val) {
pyb_lcd_obj_t *self = self_in;
// get whether instr or data
int instr_data = mp_obj_get_int(instr_data_in);
// get the buffer to send from
mp_buffer_info_t bufinfo;
uint8_t data[1];
pyb_buf_get_for_send(val, &bufinfo, data);
// send the data
for (uint i = 0; i < bufinfo.len; i++) {
lcd_out(self, instr_data, ((byte*)bufinfo.buf)[i]);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_lcd_command_obj, pyb_lcd_command);
/// \method contrast(value)
///
/// Set the contrast of the LCD. Valid values are between 0 and 47.
STATIC mp_obj_t pyb_lcd_contrast(mp_obj_t self_in, mp_obj_t contrast_in) {
pyb_lcd_obj_t *self = self_in;
int contrast = mp_obj_get_int(contrast_in);
if (contrast < 0) {
contrast = 0;
} else if (contrast > 0x2f) {
contrast = 0x2f;
}
lcd_out(self, LCD_INSTR, 0x81); // electronic volume mode set
lcd_out(self, LCD_INSTR, contrast); // electronic volume register set
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_lcd_contrast_obj, pyb_lcd_contrast);
/// \method light(value)
///
/// Turn the backlight on/off. True or 1 turns it on, False or 0 turns it off.
STATIC mp_obj_t pyb_lcd_light(mp_obj_t self_in, mp_obj_t value) {
pyb_lcd_obj_t *self = self_in;
if (mp_obj_is_true(value)) {
mp_hal_pin_high(self->pin_bl); // set pin high to turn backlight on
} else {
mp_hal_pin_low(self->pin_bl); // set pin low to turn backlight off
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_lcd_light_obj, pyb_lcd_light);
/// \method write(str)
///
/// Write the string `str` to the screen. It will appear immediately.
STATIC mp_obj_t pyb_lcd_write(mp_obj_t self_in, mp_obj_t str) {
pyb_lcd_obj_t *self = self_in;
size_t len;
const char *data = mp_obj_str_get_data(str, &len);
lcd_write_strn(self, data, len);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_lcd_write_obj, pyb_lcd_write);
/// \method fill(colour)
///
/// Fill the screen with the given colour (0 or 1 for white or black).
///
/// This method writes to the hidden buffer. Use `show()` to show the buffer.
STATIC mp_obj_t pyb_lcd_fill(mp_obj_t self_in, mp_obj_t col_in) {
pyb_lcd_obj_t *self = self_in;
int col = mp_obj_get_int(col_in);
if (col) {
col = 0xff;
}
memset(self->pix_buf, col, LCD_PIX_BUF_BYTE_SIZE);
memset(self->pix_buf2, col, LCD_PIX_BUF_BYTE_SIZE);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_lcd_fill_obj, pyb_lcd_fill);
/// \method get(x, y)
///
/// Get the pixel at the position `(x, y)`. Returns 0 or 1.
///
/// This method reads from the visible buffer.
STATIC mp_obj_t pyb_lcd_get(mp_obj_t self_in, mp_obj_t x_in, mp_obj_t y_in) {
pyb_lcd_obj_t *self = self_in;
int x = mp_obj_get_int(x_in);
int y = mp_obj_get_int(y_in);
if (0 <= x && x <= 127 && 0 <= y && y <= 31) {
uint byte_pos = x + 128 * ((uint)y >> 3);
if (self->pix_buf[byte_pos] & (1 << (y & 7))) {
return mp_obj_new_int(1);
}
}
return mp_obj_new_int(0);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_lcd_get_obj, pyb_lcd_get);
/// \method pixel(x, y, colour)
///
/// Set the pixel at `(x, y)` to the given colour (0 or 1).
///
/// This method writes to the hidden buffer. Use `show()` to show the buffer.
STATIC mp_obj_t pyb_lcd_pixel(size_t n_args, const mp_obj_t *args) {
pyb_lcd_obj_t *self = args[0];
int x = mp_obj_get_int(args[1]);
int y = mp_obj_get_int(args[2]);
if (0 <= x && x <= 127 && 0 <= y && y <= 31) {
uint byte_pos = x + 128 * ((uint)y >> 3);
if (mp_obj_get_int(args[3]) == 0) {
self->pix_buf2[byte_pos] &= ~(1 << (y & 7));
} else {
self->pix_buf2[byte_pos] |= 1 << (y & 7);
}
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_lcd_pixel_obj, 4, 4, pyb_lcd_pixel);
/// \method text(str, x, y, colour)
///
/// Draw the given text to the position `(x, y)` using the given colour (0 or 1).
///
/// This method writes to the hidden buffer. Use `show()` to show the buffer.
STATIC mp_obj_t pyb_lcd_text(size_t n_args, const mp_obj_t *args) {
// extract arguments
pyb_lcd_obj_t *self = args[0];
size_t len;
const char *data = mp_obj_str_get_data(args[1], &len);
int x0 = mp_obj_get_int(args[2]);
int y0 = mp_obj_get_int(args[3]);
int col = mp_obj_get_int(args[4]);
// loop over chars
for (const char *top = data + len; data < top; data++) {
// get char and make sure its in range of font
uint chr = *(byte*)data;
if (chr < 32 || chr > 127) {
chr = 127;
}
// get char data
const uint8_t *chr_data = &font_petme128_8x8[(chr - 32) * 8];
// loop over char data
for (uint j = 0; j < 8; j++, x0++) {
if (0 <= x0 && x0 < LCD_PIX_BUF_W) { // clip x
uint vline_data = chr_data[j]; // each byte of char data is a vertical column of 8 pixels, LSB at top
for (int y = y0; vline_data; vline_data >>= 1, y++) { // scan over vertical column
if (vline_data & 1) { // only draw if pixel set
if (0 <= y && y < LCD_PIX_BUF_H) { // clip y
uint byte_pos = x0 + LCD_PIX_BUF_W * ((uint)y >> 3);
if (col == 0) {
// clear pixel
self->pix_buf2[byte_pos] &= ~(1 << (y & 7));
} else {
// set pixel
self->pix_buf2[byte_pos] |= 1 << (y & 7);
}
}
}
}
}
}
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_lcd_text_obj, 5, 5, pyb_lcd_text);
/// \method show()
///
/// Show the hidden buffer on the screen.
STATIC mp_obj_t pyb_lcd_show(mp_obj_t self_in) {
pyb_lcd_obj_t *self = self_in;
memcpy(self->pix_buf, self->pix_buf2, LCD_PIX_BUF_BYTE_SIZE);
for (uint page = 0; page < 4; page++) {
lcd_out(self, LCD_INSTR, 0xb0 | page); // page address set
lcd_out(self, LCD_INSTR, 0x10); // column address set upper; 0
lcd_out(self, LCD_INSTR, 0x00); // column address set lower; 0
for (uint i = 0; i < 128; i++) {
lcd_out(self, LCD_DATA, self->pix_buf[128 * page + 127 - i]);
}
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_lcd_show_obj, pyb_lcd_show);
STATIC const mp_rom_map_elem_t pyb_lcd_locals_dict_table[] = {
// instance methods
{ MP_ROM_QSTR(MP_QSTR_command), MP_ROM_PTR(&pyb_lcd_command_obj) },
{ MP_ROM_QSTR(MP_QSTR_contrast), MP_ROM_PTR(&pyb_lcd_contrast_obj) },
{ MP_ROM_QSTR(MP_QSTR_light), MP_ROM_PTR(&pyb_lcd_light_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&pyb_lcd_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_fill), MP_ROM_PTR(&pyb_lcd_fill_obj) },
{ MP_ROM_QSTR(MP_QSTR_get), MP_ROM_PTR(&pyb_lcd_get_obj) },
{ MP_ROM_QSTR(MP_QSTR_pixel), MP_ROM_PTR(&pyb_lcd_pixel_obj) },
{ MP_ROM_QSTR(MP_QSTR_text), MP_ROM_PTR(&pyb_lcd_text_obj) },
{ MP_ROM_QSTR(MP_QSTR_show), MP_ROM_PTR(&pyb_lcd_show_obj) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_lcd_locals_dict, pyb_lcd_locals_dict_table);
const mp_obj_type_t pyb_lcd_type = {
{ &mp_type_type },
.name = MP_QSTR_LCD,
.make_new = pyb_lcd_make_new,
.locals_dict = (mp_obj_dict_t*)&pyb_lcd_locals_dict,
};
#endif // MICROPY_HW_HAS_LCD