708 lines
25 KiB
C
708 lines
25 KiB
C
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "py/nlr.h"
|
|
#include "py/compile.h"
|
|
#include "py/mphal.h"
|
|
#include "py/runtime.h"
|
|
#include "py/repl.h"
|
|
#include "py/gc.h"
|
|
#include "py/stackctrl.h"
|
|
|
|
#include "extmod/vfs_fat.h"
|
|
#include "lib/oofatfs/ff.h"
|
|
#include "lib/oofatfs/diskio.h"
|
|
#include "lib/mp-readline/readline.h"
|
|
#include "lib/utils/pyexec.h"
|
|
|
|
#include "asf/common/services/sleepmgr/sleepmgr.h"
|
|
#include "asf/common/services/usb/udc/udc.h"
|
|
#include "asf/common2/services/delay/delay.h"
|
|
#include "asf/sam0/drivers/nvm/nvm.h"
|
|
#include "asf/sam0/drivers/port/port.h"
|
|
#include "asf/sam0/drivers/sercom/usart/usart.h"
|
|
#include "asf/sam0/drivers/system/system.h"
|
|
#include <board.h>
|
|
|
|
#include "boards/board.h"
|
|
|
|
#include "common-hal/analogio/AnalogIn.h"
|
|
#include "common-hal/audioio/AudioOut.h"
|
|
#include "common-hal/pulseio/PulseIn.h"
|
|
#include "common-hal/pulseio/PulseOut.h"
|
|
#include "common-hal/pulseio/PWMOut.h"
|
|
#include "common-hal/usb_hid/__init__.h"
|
|
|
|
#ifdef EXPRESS_BOARD
|
|
#include "common-hal/touchio/TouchIn.h"
|
|
#define INTERNAL_CIRCUITPY_CONFIG_START_ADDR (0x00040000 - 0x100)
|
|
#else
|
|
#define INTERNAL_CIRCUITPY_CONFIG_START_ADDR (0x00040000 - 0x010000 - 0x100)
|
|
#endif
|
|
|
|
#include "autoreload.h"
|
|
#include "flash_api.h"
|
|
#include "mpconfigboard.h"
|
|
#include "rgb_led_status.h"
|
|
#include "shared_dma.h"
|
|
#include "tick.h"
|
|
|
|
fs_user_mount_t fs_user_mount_flash;
|
|
mp_vfs_mount_t mp_vfs_mount_flash;
|
|
|
|
typedef enum {
|
|
NO_SAFE_MODE = 0,
|
|
BROWNOUT,
|
|
HARD_CRASH,
|
|
USER_SAFE_MODE,
|
|
} safe_mode_t;
|
|
|
|
void do_str(const char *src, mp_parse_input_kind_t input_kind) {
|
|
mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, src, strlen(src), 0);
|
|
if (lex == NULL) {
|
|
printf("MemoryError: lexer could not allocate memory\n");
|
|
return;
|
|
}
|
|
|
|
nlr_buf_t nlr;
|
|
if (nlr_push(&nlr) == 0) {
|
|
qstr source_name = lex->source_name;
|
|
mp_parse_tree_t parse_tree = mp_parse(lex, input_kind);
|
|
mp_obj_t module_fun = mp_compile(&parse_tree, source_name, MP_EMIT_OPT_NONE, true);
|
|
mp_call_function_0(module_fun);
|
|
nlr_pop();
|
|
} else {
|
|
// uncaught exception
|
|
mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val);
|
|
}
|
|
}
|
|
|
|
// we don't make this function static because it needs a lot of stack and we
|
|
// want it to be executed without using stack within main() function
|
|
void init_flash_fs(void) {
|
|
// init the vfs object
|
|
fs_user_mount_t *vfs_fat = &fs_user_mount_flash;
|
|
vfs_fat->flags = 0;
|
|
flash_init_vfs(vfs_fat);
|
|
|
|
// try to mount the flash
|
|
FRESULT res = f_mount(&vfs_fat->fatfs);
|
|
|
|
if (res == FR_NO_FILESYSTEM) {
|
|
// no filesystem so create a fresh one
|
|
|
|
uint8_t working_buf[_MAX_SS];
|
|
res = f_mkfs(&vfs_fat->fatfs, FM_FAT, 0, working_buf, sizeof(working_buf));
|
|
// Flush the new file system to make sure its repaired immediately.
|
|
flash_flush();
|
|
if (res != FR_OK) {
|
|
return;
|
|
}
|
|
|
|
// set label
|
|
f_setlabel(&vfs_fat->fatfs, "CIRCUITPY");
|
|
} else if (res != FR_OK) {
|
|
return;
|
|
}
|
|
mp_vfs_mount_t *vfs = &mp_vfs_mount_flash;
|
|
vfs->str = "/";
|
|
vfs->len = 1;
|
|
vfs->obj = MP_OBJ_FROM_PTR(vfs_fat);
|
|
vfs->next = NULL;
|
|
MP_STATE_VM(vfs_mount_table) = vfs;
|
|
|
|
// The current directory is used as the boot up directory.
|
|
// It is set to the internal flash filesystem by default.
|
|
MP_STATE_PORT(vfs_cur) = vfs;
|
|
}
|
|
|
|
static char heap[16384];
|
|
|
|
void reset_mp(void) {
|
|
reset_status_led();
|
|
new_status_color(0x8f008f);
|
|
autoreload_stop();
|
|
|
|
// Sync the file systems in case any used RAM from the GC to cache. As soon
|
|
// as we re-init the GC all bets are off on the cache.
|
|
flash_flush();
|
|
|
|
// Clear the readline history. It references the heap we're about to destroy.
|
|
readline_init0();
|
|
|
|
#if MICROPY_ENABLE_GC
|
|
gc_init(heap, heap + sizeof(heap));
|
|
#endif
|
|
mp_init();
|
|
mp_obj_list_init(mp_sys_path, 0);
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_));
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_lib));
|
|
mp_obj_list_init(mp_sys_argv, 0);
|
|
}
|
|
|
|
extern volatile bool mp_msc_enabled;
|
|
|
|
void reset_samd21(void) {
|
|
// Reset all SERCOMs except the one being used by the SPI flash.
|
|
Sercom *sercom_instances[SERCOM_INST_NUM] = SERCOM_INSTS;
|
|
for (int i = 0; i < SERCOM_INST_NUM; i++) {
|
|
#ifdef SPI_FLASH_SERCOM
|
|
if (sercom_instances[i] == SPI_FLASH_SERCOM) {
|
|
continue;
|
|
}
|
|
#endif
|
|
#ifdef MICROPY_HW_APA102_SERCOM
|
|
if (sercom_instances[i] == MICROPY_HW_APA102_SERCOM) {
|
|
continue;
|
|
}
|
|
#endif
|
|
sercom_instances[i]->SPI.CTRLA.bit.SWRST = 1;
|
|
}
|
|
|
|
#ifdef EXPRESS_BOARD
|
|
touchin_reset();
|
|
#endif
|
|
|
|
analogin_reset();
|
|
|
|
pulsein_reset();
|
|
pulseout_reset();
|
|
|
|
// Wait for the DAC to sync then reset.
|
|
while (DAC->STATUS.reg & DAC_STATUS_SYNCBUSY) {}
|
|
DAC->CTRLA.reg |= DAC_CTRLA_SWRST;
|
|
|
|
reset_all_pins();
|
|
|
|
audioout_reset();
|
|
pwmout_reset();
|
|
|
|
usb_hid_reset();
|
|
|
|
#ifdef CALIBRATE_CRYSTALLESS
|
|
// If we are on USB lets double check our fine calibration for the clock and
|
|
// save the new value if its different enough.
|
|
if (mp_msc_enabled) {
|
|
SYSCTRL->DFLLSYNC.bit.READREQ = 1;
|
|
uint16_t saved_calibration = 0x1ff;
|
|
if (strcmp((char*) INTERNAL_CIRCUITPY_CONFIG_START_ADDR, "CIRCUITPYTHON1") == 0) {
|
|
saved_calibration = ((uint16_t *) INTERNAL_CIRCUITPY_CONFIG_START_ADDR)[8];
|
|
}
|
|
while (SYSCTRL->PCLKSR.bit.DFLLRDY == 0) {
|
|
// TODO(tannewt): Run the mass storage stuff if this takes a while.
|
|
}
|
|
int16_t current_calibration = SYSCTRL->DFLLVAL.bit.FINE;
|
|
if (abs(current_calibration - saved_calibration) > 10) {
|
|
enum status_code error_code;
|
|
uint8_t page_buffer[NVMCTRL_ROW_SIZE];
|
|
for (int i = 0; i < NVMCTRL_ROW_PAGES; i++) {
|
|
do
|
|
{
|
|
error_code = nvm_read_buffer(INTERNAL_CIRCUITPY_CONFIG_START_ADDR + i * NVMCTRL_PAGE_SIZE,
|
|
page_buffer + i * NVMCTRL_PAGE_SIZE,
|
|
NVMCTRL_PAGE_SIZE);
|
|
} while (error_code == STATUS_BUSY);
|
|
}
|
|
// If this is the first write, include the header.
|
|
if (strcmp((char*) page_buffer, "CIRCUITPYTHON1") != 0) {
|
|
memcpy(page_buffer, "CIRCUITPYTHON1", 15);
|
|
}
|
|
// First 16 bytes (0-15) are ID. Little endian!
|
|
page_buffer[16] = current_calibration & 0xff;
|
|
page_buffer[17] = current_calibration >> 8;
|
|
do
|
|
{
|
|
error_code = nvm_erase_row(INTERNAL_CIRCUITPY_CONFIG_START_ADDR);
|
|
} while (error_code == STATUS_BUSY);
|
|
for (int i = 0; i < NVMCTRL_ROW_PAGES; i++) {
|
|
do
|
|
{
|
|
error_code = nvm_write_buffer(INTERNAL_CIRCUITPY_CONFIG_START_ADDR + i * NVMCTRL_PAGE_SIZE,
|
|
page_buffer + i * NVMCTRL_PAGE_SIZE,
|
|
NVMCTRL_PAGE_SIZE);
|
|
} while (error_code == STATUS_BUSY);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
bool maybe_run(const char* filename, pyexec_result_t* exec_result) {
|
|
mp_import_stat_t stat = mp_import_stat(filename);
|
|
if (stat != MP_IMPORT_STAT_FILE) {
|
|
return false;
|
|
}
|
|
mp_hal_stdout_tx_str(filename);
|
|
mp_hal_stdout_tx_str(" output:\r\n");
|
|
pyexec_file(filename, exec_result);
|
|
return true;
|
|
}
|
|
|
|
bool start_mp(safe_mode_t safe_mode) {
|
|
bool cdc_enabled_at_start = mp_cdc_enabled;
|
|
#ifdef CIRCUITPY_AUTORELOAD_DELAY_MS
|
|
if (cdc_enabled_at_start) {
|
|
mp_hal_stdout_tx_str("\r\n");
|
|
if (autoreload_is_enabled()) {
|
|
mp_hal_stdout_tx_str("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\r\n");
|
|
} else if (safe_mode != NO_SAFE_MODE) {
|
|
mp_hal_stdout_tx_str("Running in safe mode! Auto-reload is off.\r\n");
|
|
} else if (!autoreload_is_enabled()) {
|
|
mp_hal_stdout_tx_str("Auto-reload is off.\r\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
pyexec_result_t result;
|
|
bool found_main = false;
|
|
if (safe_mode != NO_SAFE_MODE) {
|
|
mp_hal_stdout_tx_str("Running in safe mode! Not running saved code.\r\n");
|
|
} else {
|
|
new_status_color(MAIN_RUNNING);
|
|
found_main = maybe_run("code.txt", &result) ||
|
|
maybe_run("code.py", &result) ||
|
|
maybe_run("main.py", &result) ||
|
|
maybe_run("main.txt", &result);
|
|
reset_status_led();
|
|
|
|
if (result.return_code & PYEXEC_FORCED_EXIT) {
|
|
return reload_next_character;
|
|
}
|
|
|
|
// If not is USB mode then do not skip the repl.
|
|
#ifndef USB_REPL
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// Wait for connection or character.
|
|
bool cdc_enabled_before = false;
|
|
#if defined(MICROPY_HW_NEOPIXEL) || (defined(MICROPY_HW_APA102_MOSI) && defined(MICROPY_HW_APA102_SCK))
|
|
new_status_color(ALL_DONE);
|
|
uint32_t pattern_start = ticks_ms;
|
|
|
|
uint32_t total_exception_cycle = 0;
|
|
uint8_t ones = result.exception_line % 10;
|
|
ones += ones > 0 ? 1 : 0;
|
|
uint8_t tens = (result.exception_line / 10) % 10;
|
|
tens += tens > 0 ? 1 : 0;
|
|
uint8_t hundreds = (result.exception_line / 100) % 10;
|
|
hundreds += hundreds > 0 ? 1 : 0;
|
|
uint8_t thousands = (result.exception_line / 1000) % 10;
|
|
thousands += thousands > 0 ? 1 : 0;
|
|
uint8_t digit_sum = ones + tens + hundreds + thousands;
|
|
uint8_t num_places = 0;
|
|
uint16_t line = result.exception_line;
|
|
for (int i = 0; i < 4; i++) {
|
|
if ((line % 10) > 0) {
|
|
num_places++;
|
|
}
|
|
line /= 10;
|
|
}
|
|
if (result.return_code == PYEXEC_EXCEPTION) {
|
|
total_exception_cycle = EXCEPTION_TYPE_LENGTH_MS * 3 + LINE_NUMBER_TOGGLE_LENGTH * digit_sum + LINE_NUMBER_TOGGLE_LENGTH * num_places;
|
|
}
|
|
#endif
|
|
while (true) {
|
|
#ifdef MICROPY_VM_HOOK_LOOP
|
|
MICROPY_VM_HOOK_LOOP
|
|
#endif
|
|
if (reload_next_character) {
|
|
return true;
|
|
}
|
|
if (usb_rx_count > 0) {
|
|
// Skip REPL if reload was requested.
|
|
return receive_usb() == CHAR_CTRL_D;
|
|
}
|
|
|
|
if (!cdc_enabled_before && mp_cdc_enabled) {
|
|
if (cdc_enabled_at_start) {
|
|
mp_hal_stdout_tx_str("\r\n\r\n");
|
|
}
|
|
|
|
if (!cdc_enabled_at_start) {
|
|
if (autoreload_is_enabled()) {
|
|
mp_hal_stdout_tx_str("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\r\n");
|
|
} else {
|
|
mp_hal_stdout_tx_str("Auto-reload is off.\r\n");
|
|
}
|
|
}
|
|
// Output a user safe mode string if its set.
|
|
#ifdef BOARD_USER_SAFE_MODE
|
|
if (safe_mode == USER_SAFE_MODE) {
|
|
mp_hal_stdout_tx_str("\r\nYou requested starting safe mode by ");
|
|
mp_hal_stdout_tx_str(BOARD_USER_SAFE_MODE);
|
|
mp_hal_stdout_tx_str(".\r\nTo exit, please reset the board without ");
|
|
mp_hal_stdout_tx_str(BOARD_USER_SAFE_MODE);
|
|
mp_hal_stdout_tx_str(".\r\n");
|
|
} else
|
|
#endif
|
|
if (safe_mode != NO_SAFE_MODE) {
|
|
mp_hal_stdout_tx_str("\r\nYou are running in safe mode which means something really bad happened.\r\n");
|
|
if (safe_mode == HARD_CRASH) {
|
|
mp_hal_stdout_tx_str("Looks like our core CircuitPython code crashed hard. Whoops!\r\n");
|
|
mp_hal_stdout_tx_str("Please file an issue here with the contents of your CIRCUITPY drive:\r\n");
|
|
mp_hal_stdout_tx_str("https://github.com/adafruit/circuitpython/issues\r\n");
|
|
} else if (safe_mode == BROWNOUT) {
|
|
mp_hal_stdout_tx_str("The microcontroller's power dipped. Please make sure your power supply provides \r\n");
|
|
mp_hal_stdout_tx_str("enough power for the whole circuit and press reset (after ejecting CIRCUITPY).\r\n");
|
|
}
|
|
}
|
|
mp_hal_stdout_tx_str("\r\nPress any key to enter the REPL. Use CTRL-D to reload.\r\n");
|
|
}
|
|
if (cdc_enabled_before && !mp_cdc_enabled) {
|
|
cdc_enabled_at_start = false;
|
|
}
|
|
cdc_enabled_before = mp_cdc_enabled;
|
|
|
|
#if defined(MICROPY_HW_NEOPIXEL) || (defined(MICROPY_HW_APA102_MOSI) && defined(MICROPY_HW_APA102_SCK))
|
|
uint32_t tick_diff = ticks_ms - pattern_start;
|
|
if (result.return_code != PYEXEC_EXCEPTION) {
|
|
// All is good. Ramp ALL_DONE up and down.
|
|
if (tick_diff > ALL_GOOD_CYCLE_MS) {
|
|
pattern_start = ticks_ms;
|
|
tick_diff = 0;
|
|
}
|
|
|
|
uint16_t brightness = tick_diff * 255 / (ALL_GOOD_CYCLE_MS / 2);
|
|
if (brightness > 255) {
|
|
brightness = 511 - brightness;
|
|
}
|
|
if (safe_mode == NO_SAFE_MODE) {
|
|
new_status_color(color_brightness(ALL_DONE, brightness));
|
|
} else {
|
|
new_status_color(color_brightness(SAFE_MODE, brightness));
|
|
}
|
|
} else {
|
|
if (tick_diff > total_exception_cycle) {
|
|
pattern_start = ticks_ms;
|
|
tick_diff = 0;
|
|
}
|
|
// First flash the file color.
|
|
if (tick_diff < EXCEPTION_TYPE_LENGTH_MS) {
|
|
if (found_main) {
|
|
new_status_color(MAIN_RUNNING);
|
|
} else {
|
|
new_status_color(BOOT_RUNNING);
|
|
}
|
|
// Next flash the exception color.
|
|
} else if (tick_diff < EXCEPTION_TYPE_LENGTH_MS * 2) {
|
|
if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_IndentationError)) {
|
|
new_status_color(INDENTATION_ERROR);
|
|
} else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_SyntaxError)) {
|
|
new_status_color(SYNTAX_ERROR);
|
|
} else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_NameError)) {
|
|
new_status_color(NAME_ERROR);
|
|
} else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_OSError)) {
|
|
new_status_color(OS_ERROR);
|
|
} else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_ValueError)) {
|
|
new_status_color(VALUE_ERROR);
|
|
} else {
|
|
new_status_color(OTHER_ERROR);
|
|
}
|
|
// Finally flash the line number digits from highest to lowest.
|
|
// Zeroes will not produce a flash but can be read by the absence of
|
|
// a color from the sequence.
|
|
} else if (tick_diff < (EXCEPTION_TYPE_LENGTH_MS * 2 + LINE_NUMBER_TOGGLE_LENGTH * digit_sum)) {
|
|
uint32_t digit_diff = tick_diff - EXCEPTION_TYPE_LENGTH_MS * 2;
|
|
if ((digit_diff % LINE_NUMBER_TOGGLE_LENGTH) < (LINE_NUMBER_TOGGLE_LENGTH / 2)) {
|
|
new_status_color(BLACK);
|
|
} else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * thousands) {
|
|
if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH) {
|
|
new_status_color(BLACK);
|
|
} else {
|
|
new_status_color(THOUSANDS);
|
|
}
|
|
} else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds)) {
|
|
if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + 1)) {
|
|
new_status_color(BLACK);
|
|
} else {
|
|
new_status_color(HUNDREDS);
|
|
}
|
|
} else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + tens)) {
|
|
if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + 1)) {
|
|
new_status_color(BLACK);
|
|
} else {
|
|
new_status_color(TENS);
|
|
}
|
|
} else {
|
|
if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + tens + 1)) {
|
|
new_status_color(BLACK);
|
|
} else {
|
|
new_status_color(ONES);
|
|
}
|
|
}
|
|
} else {
|
|
new_status_color(BLACK);
|
|
}
|
|
}
|
|
#else
|
|
(void) found_main; // Pretend to use found_main so the compiler doesn't complain.
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef UART_REPL
|
|
struct usart_module usart_instance;
|
|
#endif
|
|
|
|
#ifdef ENABLE_MICRO_TRACE_BUFFER
|
|
// Stores 2 ^ TRACE_BUFFER_MAGNITUDE_PACKETS packets.
|
|
// 7 -> 128 packets
|
|
#define TRACE_BUFFER_MAGNITUDE_PACKETS 7
|
|
// Size in uint32_t. Two per packet.
|
|
#define TRACE_BUFFER_SIZE (1 << (TRACE_BUFFER_MAGNITUDE_PACKETS + 1))
|
|
// Size in bytes. 4 bytes per uint32_t.
|
|
#define TRACE_BUFFER_SIZE_BYTES (TRACE_BUFFER_SIZE << 2)
|
|
__attribute__((__aligned__(TRACE_BUFFER_SIZE_BYTES))) uint32_t mtb[TRACE_BUFFER_SIZE];
|
|
#endif
|
|
|
|
// Serial number as hex characters.
|
|
char serial_number[USB_DEVICE_GET_SERIAL_NAME_LENGTH];
|
|
void load_serial_number(void) {
|
|
char nibble_to_hex[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A',
|
|
'B', 'C', 'D', 'E', 'F'};
|
|
uint32_t* addresses[4] = {(uint32_t *) 0x0080A00C, (uint32_t *) 0x0080A040,
|
|
(uint32_t *) 0x0080A044, (uint32_t *) 0x0080A048};
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 8; j++) {
|
|
uint8_t nibble = (*(addresses[i]) >> j * 4) & 0xf;
|
|
serial_number[i * 8 + j] = nibble_to_hex[nibble];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Provided by the linker;
|
|
extern uint32_t _ezero;
|
|
|
|
safe_mode_t samd21_init(void) {
|
|
#ifdef ENABLE_MICRO_TRACE_BUFFER
|
|
REG_MTB_POSITION = ((uint32_t) (mtb - REG_MTB_BASE)) & 0xFFFFFFF8;
|
|
REG_MTB_FLOW = (((uint32_t) mtb - REG_MTB_BASE) + TRACE_BUFFER_SIZE_BYTES) & 0xFFFFFFF8;
|
|
REG_MTB_MASTER = 0x80000000 + (TRACE_BUFFER_MAGNITUDE_PACKETS - 1);
|
|
#endif
|
|
|
|
// On power on start or external reset, set _ezero to the canary word. If it
|
|
// gets killed, we boot in safe mod. _ezero is the boundary between statically
|
|
// allocated memory including the fixed MicroPython heap and the stack. If either
|
|
// misbehaves, the canary will not be in tact after soft reset.
|
|
#ifdef CIRCUITPY_CANARY_WORD
|
|
if (PM->RCAUSE.bit.POR == 1 || PM->RCAUSE.bit.EXT == 1) {
|
|
_ezero = CIRCUITPY_CANARY_WORD;
|
|
} else if (PM->RCAUSE.bit.SYST == 1) {
|
|
// If we're starting from a system reset we're likely coming from the
|
|
// bootloader or hard fault handler. If we're coming from the handler
|
|
// the canary will be CIRCUITPY_SAFE_RESTART_WORD and we don't want to
|
|
// revive the canary so that a second hard fault won't restart. Resets
|
|
// from anywhere else are ok.
|
|
if (_ezero == CIRCUITPY_SAFE_RESTART_WORD) {
|
|
_ezero = ~CIRCUITPY_CANARY_WORD;
|
|
} else {
|
|
_ezero = CIRCUITPY_CANARY_WORD;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
load_serial_number();
|
|
|
|
irq_initialize_vectors();
|
|
cpu_irq_enable();
|
|
|
|
// Initialize the sleep manager
|
|
sleepmgr_init();
|
|
|
|
uint16_t dfll_fine_calibration = 0x1ff;
|
|
#ifdef CALIBRATE_CRYSTALLESS
|
|
// This is stored in an NVM page after the text and data storage but before
|
|
// the optional file system. The first 16 bytes are the identifier for the
|
|
// section.
|
|
if (strcmp((char*) INTERNAL_CIRCUITPY_CONFIG_START_ADDR, "CIRCUITPYTHON1") == 0) {
|
|
dfll_fine_calibration = ((uint16_t *) INTERNAL_CIRCUITPY_CONFIG_START_ADDR)[8];
|
|
}
|
|
#endif
|
|
|
|
// We pass in the DFLL fine calibration because we can't change it once the
|
|
// clock is going.
|
|
system_init(dfll_fine_calibration);
|
|
|
|
delay_init();
|
|
|
|
board_init();
|
|
|
|
// Configure millisecond timer initialization.
|
|
tick_init();
|
|
|
|
// Uncomment to init PIN_PA17 for debugging.
|
|
// struct port_config pin_conf;
|
|
// port_get_config_defaults(&pin_conf);
|
|
//
|
|
// pin_conf.direction = PORT_PIN_DIR_OUTPUT;
|
|
// port_pin_set_config(MICROPY_HW_LED1, &pin_conf);
|
|
// port_pin_set_output_level(MICROPY_HW_LED1, false);
|
|
|
|
rgb_led_status_init();
|
|
|
|
// Init the nvm controller.
|
|
struct nvm_config config_nvm;
|
|
nvm_get_config_defaults(&config_nvm);
|
|
config_nvm.manual_page_write = false;
|
|
nvm_set_config(&config_nvm);
|
|
|
|
init_shared_dma();
|
|
|
|
#ifdef CIRCUITPY_CANARY_WORD
|
|
// Run in safe mode if the canary is corrupt.
|
|
if (_ezero != CIRCUITPY_CANARY_WORD) {
|
|
return HARD_CRASH;
|
|
}
|
|
#endif
|
|
|
|
if (PM->RCAUSE.bit.BOD33 == 1 || PM->RCAUSE.bit.BOD12 == 1) {
|
|
return BROWNOUT;
|
|
}
|
|
|
|
if (board_requests_safe_mode()) {
|
|
return USER_SAFE_MODE;
|
|
}
|
|
|
|
return NO_SAFE_MODE;
|
|
}
|
|
|
|
extern uint32_t _estack;
|
|
extern uint32_t _ebss;
|
|
|
|
int main(void) {
|
|
// initialise the cpu and peripherals
|
|
safe_mode_t safe_mode = samd21_init();
|
|
|
|
// Stack limit should be less than real stack size, so we have a chance
|
|
// to recover from limit hit. (Limit is measured in bytes.)
|
|
mp_stack_ctrl_init();
|
|
mp_stack_set_limit((char*)&_estack - (char*)&_ebss - 1024);
|
|
|
|
init_flash_fs();
|
|
|
|
// Reset everything and prep MicroPython to run boot.py.
|
|
reset_samd21();
|
|
reset_board();
|
|
reset_mp();
|
|
|
|
// Turn on autoreload by default but before boot.py in case it wants to change it.
|
|
autoreload_enable();
|
|
|
|
// By default our internal flash is readonly to local python code and
|
|
// writeable over USB. Set it here so that boot.py can change it.
|
|
flash_set_usb_writeable(true);
|
|
|
|
// If not in safe mode, run boot before initing USB and capture output in a
|
|
// file.
|
|
if (safe_mode == NO_SAFE_MODE && MP_STATE_VM(vfs_mount_table) != NULL) {
|
|
new_status_color(BOOT_RUNNING);
|
|
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
|
|
// Since USB isn't up yet we can cheat and let ourselves write the boot
|
|
// output file.
|
|
flash_set_usb_writeable(false);
|
|
FIL file_pointer;
|
|
boot_output_file = &file_pointer;
|
|
f_open(&((fs_user_mount_t *) MP_STATE_VM(vfs_mount_table)->obj)->fatfs,
|
|
boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_WRITE | FA_CREATE_ALWAYS);
|
|
flash_set_usb_writeable(true);
|
|
#endif
|
|
|
|
// TODO(tannewt): Re-add support for flashing boot error output.
|
|
bool found_boot = maybe_run("settings.txt", NULL) ||
|
|
maybe_run("settings.py", NULL) ||
|
|
maybe_run("boot.py", NULL) ||
|
|
maybe_run("boot.txt", NULL);
|
|
(void) found_boot;
|
|
|
|
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
|
|
f_close(boot_output_file);
|
|
flash_flush();
|
|
boot_output_file = NULL;
|
|
#endif
|
|
|
|
// Reset to remove any state that boot.py setup. It should only be used to
|
|
// change internal state thats not in the heap.
|
|
reset_samd21();
|
|
reset_mp();
|
|
}
|
|
|
|
usb_hid_init();
|
|
|
|
// Start USB after getting everything going.
|
|
#ifdef USB_REPL
|
|
udc_start();
|
|
#endif
|
|
|
|
// Boot script is finished, so now go into REPL/main mode.
|
|
int exit_code = PYEXEC_FORCED_EXIT;
|
|
bool skip_repl = true;
|
|
bool first_run = true;
|
|
for (;;) {
|
|
if (!skip_repl) {
|
|
// The REPL mode can change, or it can request a reload.
|
|
bool autoreload_on = autoreload_is_enabled();
|
|
autoreload_disable();
|
|
new_status_color(REPL_RUNNING);
|
|
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
|
|
exit_code = pyexec_raw_repl();
|
|
} else {
|
|
exit_code = pyexec_friendly_repl();
|
|
}
|
|
if (autoreload_on) {
|
|
autoreload_enable();
|
|
}
|
|
reset_samd21();
|
|
reset_board();
|
|
reset_mp();
|
|
}
|
|
if (exit_code == PYEXEC_FORCED_EXIT) {
|
|
if (!first_run) {
|
|
mp_hal_stdout_tx_str("soft reboot\r\n");
|
|
}
|
|
first_run = false;
|
|
skip_repl = start_mp(safe_mode);
|
|
reset_samd21();
|
|
reset_board();
|
|
reset_mp();
|
|
} else if (exit_code != 0) {
|
|
break;
|
|
}
|
|
}
|
|
mp_deinit();
|
|
return 0;
|
|
}
|
|
|
|
void gc_collect(void) {
|
|
// WARNING: This gc_collect implementation doesn't try to get root
|
|
// pointers from CPU registers, and thus may function incorrectly.
|
|
void *dummy;
|
|
gc_collect_start();
|
|
// This collects root pointers from the VFS mount table. Some of them may
|
|
// have lost their references in the VM even though they are mounted.
|
|
gc_collect_root((void**)&MP_STATE_VM(vfs_mount_table), sizeof(mp_vfs_mount_t) / sizeof(mp_uint_t));
|
|
// This naively collects all object references from an approximate stack
|
|
// range.
|
|
gc_collect_root(&dummy, ((mp_uint_t)&_estack - (mp_uint_t)&dummy) / sizeof(mp_uint_t));
|
|
gc_collect_end();
|
|
}
|
|
|
|
void NORETURN nlr_jump_fail(void *val) {
|
|
HardFault_Handler();
|
|
while (true) {}
|
|
}
|
|
|
|
void NORETURN __fatal_error(const char *msg) {
|
|
HardFault_Handler();
|
|
while (true) {}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
|
|
printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
|
|
__fatal_error("Assertion failed");
|
|
}
|
|
#endif
|