436 lines
14 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2015 Glenn Ruben Bakke
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdbool.h>
#include <string.h>
#include <stdarg.h>
#include "py/nlr.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "pin.h"
#include "genhdr/pins.h"
#include "uart.h"
#include "mpconfigboard.h"
#include "nrf.h"
#include "mphalport.h"
#include "hal_uart.h"
#define CHAR_WIDTH_8BIT (0)
#define CHAR_WIDTH_9BIT (1)
typedef struct _machine_hard_uart_obj_t {
mp_obj_base_t base;
UART_HandleTypeDef * uart;
byte char_width; // 0 for 7,8 bit chars, 1 for 9 bit chars
} machine_hard_uart_obj_t;
UART_HandleTypeDef UARTHandle0 = {.p_instance = NULL, .init.id = 0};
#if NRF52840_XXAA
UART_HandleTypeDef UARTHandle1 = {.p_instance = NULL, .init.id = 1};
#endif
STATIC machine_hard_uart_obj_t machine_hard_uart_obj[] = {
{{&machine_hard_uart_type}, &UARTHandle0},
#if NRF52840_XXAA
{{&machine_hard_uart_type}, &UARTHandle1},
#endif
};
void uart_init0(void) {
// reset the UART handles
memset(&UARTHandle0, 0, sizeof(UART_HandleTypeDef));
UARTHandle0.p_instance = UART_BASE(0);
#if NRF52840_XXAA
memset(&UARTHandle1, 0, sizeof(UART_HandleTypeDef));
UARTHandle0.p_instance = UART_BASE(1);
#endif
#if 0
for (int i = 0; i < MP_ARRAY_SIZE(MP_STATE_PORT(pyb_uart_obj_all)); i++) {
MP_STATE_PORT(pyb_uart_obj_all)[i] = NULL;
}
#endif
}
STATIC int uart_find(mp_obj_t id) {
// given an integer id
int uart_id = mp_obj_get_int(id);
if (uart_id >= 0 && uart_id <= MP_ARRAY_SIZE(machine_hard_uart_obj)
&& machine_hard_uart_obj[uart_id].uart != NULL) {
return uart_id;
}
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
"UART(%d) does not exist", uart_id));
}
void uart_irq_handler(mp_uint_t uart_id) {
}
bool uart_rx_any(machine_hard_uart_obj_t *uart_obj) {
// TODO: uart will block for now.
return true;
}
#if 0
// Waits at most timeout milliseconds for at least 1 char to become ready for
// reading (from buf or for direct reading).
// Returns true if something available, false if not.
STATIC bool uart_rx_wait(machine_hard_uart_obj_t * self, uint32_t timeout) {
return false;
}
#endif
int uart_rx_char(machine_hard_uart_obj_t * self) {
uint8_t ch;
hal_uart_char_read(self->uart->p_instance, &ch);
return (int)ch;
}
STATIC hal_uart_error_t uart_tx_char(machine_hard_uart_obj_t * self, int c) {
return hal_uart_char_write(self->uart->p_instance, (char)c);
}
void uart_tx_strn(machine_hard_uart_obj_t *uart_obj, const char *str, uint len) {
for (const char *top = str + len; str < top; str++) {
uart_tx_char(uart_obj, *str);
}
}
void uart_tx_strn_cooked(machine_hard_uart_obj_t *uart_obj, const char *str, uint len) {
for (const char *top = str + len; str < top; str++) {
if (*str == '\n') {
uart_tx_char(uart_obj, '\r');
}
uart_tx_char(uart_obj, *str);
}
}
/******************************************************************************/
/* Micro Python bindings */
STATIC void machine_hard_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
}
/// \method init(baudrate, bits=8, parity=None, stop=1, *, timeout=1000, timeout_char=0, read_buf_len=64)
///
/// Initialise the UART bus with the given parameters:
/// - `id`is bus id.
/// - `baudrate` is the clock rate.
/// - `bits` is the number of bits per byte, 7, 8 or 9.
/// - `parity` is the parity, `None`, 0 (even) or 1 (odd).
/// - `stop` is the number of stop bits, 1 or 2.
/// - `timeout` is the timeout in milliseconds to wait for the first character.
/// - `timeout_char` is the timeout in milliseconds to wait between characters.
/// - `read_buf_len` is the character length of the read buffer (0 to disable).
STATIC mp_obj_t machine_hard_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_baudrate, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 9600} },
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_stop, MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} },
{ MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_read_buf_len, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 64} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// get static peripheral object
int uart_id = uart_find(args[0].u_obj);
machine_hard_uart_obj_t * self = &machine_hard_uart_obj[uart_id];
hal_uart_init_t * init = &self->uart->init;
// flow control
init->flow_control = args[5].u_int;
#if 0
// init UART (if it fails, it's because the port doesn't exist)
if (!uart_init2(self)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) does not exist", self->uart_id));
}
// set timeouts
self->timeout = args[6].u_int;
self->timeout_char = args[7].u_int;
// setup the read buffer
m_del(byte, self->read_buf, self->read_buf_len << self->char_width);
self->read_buf_head = 0;
self->read_buf_tail = 0;
if (args[8].u_int <= 0) {
// no read buffer
self->read_buf_len = 0;
self->read_buf = NULL;
} else {
// read buffer using interrupts
self->read_buf_len = args[8].u_int;
self->read_buf = m_new(byte, args[8].u_int << self->char_width);
}
#endif // 0
#if MICROPY_HW_UART1_HWFC
init->flow_control = true;
#else
init->flow_control = false;
#endif
init->use_parity = false;
#if (BLUETOOTH_SD == 100)
init->irq_priority = 3;
#else
init->irq_priority = 6;
#endif
switch (args[1].u_int) {
case 1200:
init->baud_rate = HAL_UART_BAUD_1K2;
break;
case 2400:
init->baud_rate = HAL_UART_BAUD_2K4;
break;
case 4800:
init->baud_rate = HAL_UART_BAUD_4K8;
break;
case 9600:
init->baud_rate = HAL_UART_BAUD_9K6;
break;
case 14400:
init->baud_rate = HAL_UART_BAUD_14K4;
break;
case 19200:
init->baud_rate = HAL_UART_BAUD_19K2;
break;
case 28800:
init->baud_rate = HAL_UART_BAUD_28K8;
break;
case 38400:
init->baud_rate = HAL_UART_BAUD_38K4;
break;
case 57600:
init->baud_rate = HAL_UART_BAUD_57K6;
break;
case 76800:
init->baud_rate = HAL_UART_BAUD_76K8;
break;
case 115200:
init->baud_rate = HAL_UART_BAUD_115K2;
break;
case 230400:
init->baud_rate = HAL_UART_BAUD_230K4;
break;
case 250000:
init->baud_rate = HAL_UART_BAUD_250K0;
break;
case 500000:
init->baud_rate = HAL_UART_BAUD_500K0;
break;
case 1000000:
init->baud_rate = HAL_UART_BAUD_1M0;
break;
default:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
"UART baudrate not supported, %ul", init->baud_rate));
break;
}
init->rx_pin = &MICROPY_HW_UART1_RX;
init->tx_pin = &MICROPY_HW_UART1_TX;
#if MICROPY_HW_UART1_HWFC
init->rts_pin = &MICROPY_HW_UART1_RTS;
init->cts_pin = &MICROPY_HW_UART1_CTS;
#endif
hal_uart_init(self->uart->p_instance, init);
return MP_OBJ_FROM_PTR(self);
}
/// \method writechar(char)
/// Write a single character on the bus. `char` is an integer to write.
/// Return value: `None`.
STATIC mp_obj_t machine_hard_uart_writechar(mp_obj_t self_in, mp_obj_t char_in) {
machine_hard_uart_obj_t *self = self_in;
// get the character to write (might be 9 bits)
uint16_t data = mp_obj_get_int(char_in);
hal_uart_error_t err = 0;
for (int i = 0; i < 2; i++) {
err = uart_tx_char(self, (int)(&data)[i]);
}
HAL_StatusTypeDef status = self->uart->p_instance->EVENTS_ERROR;
if (err != HAL_UART_ERROR_NONE) {
mp_hal_raise(status);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_hard_uart_writechar_obj, machine_hard_uart_writechar);
/// \method readchar()
/// Receive a single character on the bus.
/// Return value: The character read, as an integer. Returns -1 on timeout.
STATIC mp_obj_t machine_hard_uart_readchar(mp_obj_t self_in) {
machine_hard_uart_obj_t *self = self_in;
#if 0
if (uart_rx_wait(self, self->timeout)) {
#endif
return MP_OBJ_NEW_SMALL_INT(uart_rx_char(self));
#if 0
} else {
// return -1 on timeout
return MP_OBJ_NEW_SMALL_INT(-1);
}
#endif
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_hard_uart_readchar_obj, machine_hard_uart_readchar);
// uart.sendbreak()
STATIC mp_obj_t machine_hard_uart_sendbreak(mp_obj_t self_in) {
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_hard_uart_sendbreak_obj, machine_hard_uart_sendbreak);
STATIC const mp_rom_map_elem_t machine_hard_uart_locals_dict_table[] = {
// instance methods
/// \method read([nbytes])
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
/// \method readline()
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) },
/// \method readinto(buf[, nbytes])
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
/// \method writechar(buf)
{ MP_ROM_QSTR(MP_QSTR_writechar), MP_ROM_PTR(&machine_hard_uart_writechar_obj) },
{ MP_ROM_QSTR(MP_QSTR_readchar), MP_ROM_PTR(&machine_hard_uart_readchar_obj) },
{ MP_ROM_QSTR(MP_QSTR_sendbreak), MP_ROM_PTR(&machine_hard_uart_sendbreak_obj) },
// class constants
/*
{ MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(UART_HWCONTROL_RTS) },
{ MP_ROM_QSTR(MP_QSTR_CTS), MP_ROM_INT(UART_HWCONTROL_CTS) },
*/
};
STATIC MP_DEFINE_CONST_DICT(machine_hard_uart_locals_dict, machine_hard_uart_locals_dict_table);
STATIC mp_uint_t machine_hard_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
machine_hard_uart_obj_t *self = self_in;
byte *buf = buf_in;
// check that size is a multiple of character width
if (size & self->char_width) {
*errcode = MP_EIO;
return MP_STREAM_ERROR;
}
// convert byte size to char size
size >>= self->char_width;
// make sure we want at least 1 char
if (size == 0) {
return 0;
}
// read the data
byte * orig_buf = buf;
for (;;) {
int data = uart_rx_char(self);
*buf++ = data;
if (--size == 0) {
// return number of bytes read
return buf - orig_buf;
}
}
}
STATIC mp_uint_t machine_hard_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
machine_hard_uart_obj_t *self = self_in;
const byte *buf = buf_in;
// check that size is a multiple of character width
if (size & self->char_width) {
*errcode = MP_EIO;
return MP_STREAM_ERROR;
}
hal_uart_error_t err = 0;
for (int i = 0; i < size; i++) {
err = uart_tx_char(self, (int)((uint8_t *)buf)[i]);
}
if (err == HAL_UART_ERROR_NONE) {
// return number of bytes written
return size;
} else {
*errcode = mp_hal_status_to_errno_table[err];
return MP_STREAM_ERROR;
}
}
STATIC mp_uint_t machine_hard_uart_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
machine_hard_uart_obj_t *self = self_in;
(void)self;
return MP_STREAM_ERROR;
}
STATIC const mp_stream_p_t uart_stream_p = {
.read = machine_hard_uart_read,
.write = machine_hard_uart_write,
.ioctl = machine_hard_uart_ioctl,
.is_text = false,
};
const mp_obj_type_t machine_hard_uart_type = {
{ &mp_type_type },
.name = MP_QSTR_UART,
.print = machine_hard_uart_print,
.make_new = machine_hard_uart_make_new,
.getiter = mp_identity_getiter,
.iternext = mp_stream_unbuffered_iter,
.protocol = &uart_stream_p,
.locals_dict = (mp_obj_dict_t*)&machine_hard_uart_locals_dict,
};