circuitpython/ports/esp8266/machine_hspi.c

187 lines
6.6 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "ets_sys.h"
#include "etshal.h"
#include "ets_alt_task.h"
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mphal.h"
#include "extmod/machine_spi.h"
#include "modmachine.h"
#include "hspi.h"
#if MICROPY_PY_MACHINE_SPI
typedef struct _machine_hspi_obj_t {
mp_obj_base_t base;
uint32_t baudrate;
uint8_t polarity;
uint8_t phase;
} machine_hspi_obj_t;
STATIC void machine_hspi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
(void)self_in;
if (dest == NULL) {
// fast case when we only need to write data
size_t chunk_size = 1024;
size_t count = len / chunk_size;
size_t i = 0;
for (size_t j = 0; j < count; ++j) {
for (size_t k = 0; k < chunk_size; ++k) {
spi_tx8fast(HSPI, src[i]);
++i;
}
ets_loop_iter();
}
while (i < len) {
spi_tx8fast(HSPI, src[i]);
++i;
}
// wait for SPI transaction to complete
while (spi_busy(HSPI)) {
}
} else {
// we need to read and write data
// Process data in chunks, let the pending tasks run in between
size_t chunk_size = 1024; // TODO this should depend on baudrate
size_t count = len / chunk_size;
size_t i = 0;
for (size_t j = 0; j < count; ++j) {
for (size_t k = 0; k < chunk_size; ++k) {
dest[i] = spi_transaction(HSPI, 0, 0, 0, 0, 8, src[i], 8, 0);
++i;
}
ets_loop_iter();
}
while (i < len) {
dest[i] = spi_transaction(HSPI, 0, 0, 0, 0, 8, src[i], 8, 0);
++i;
}
}
}
/******************************************************************************/
// MicroPython bindings for HSPI
STATIC void machine_hspi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_hspi_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "HSPI(id=1, baudrate=%u, polarity=%u, phase=%u)",
self->baudrate, self->polarity, self->phase);
}
STATIC void machine_hspi_init(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
machine_hspi_obj_t *self = (machine_hspi_obj_t *)self_in;
enum { ARG_baudrate, ARG_polarity, ARG_phase };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_polarity, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_phase, MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args),
allowed_args, args);
if (args[ARG_baudrate].u_int != -1) {
self->baudrate = args[ARG_baudrate].u_int;
}
if (args[ARG_polarity].u_int != -1) {
self->polarity = args[ARG_polarity].u_int;
}
if (args[ARG_phase].u_int != -1) {
self->phase = args[ARG_phase].u_int;
}
if (self->baudrate == 80000000L) {
// Special case for full speed.
spi_init_gpio(HSPI, SPI_CLK_80MHZ_NODIV);
spi_clock(HSPI, 0, 0);
} else if (self->baudrate > 40000000L) {
mp_raise_ValueError(MP_ERROR_TEXT("impossible baudrate"));
} else {
uint32_t divider = 40000000L / self->baudrate;
uint16_t prediv = MIN(divider, SPI_CLKDIV_PRE + 1);
uint16_t cntdiv = (divider / prediv) * 2; // cntdiv has to be even
if (cntdiv > SPI_CLKCNT_N + 1 || cntdiv == 0 || prediv == 0) {
mp_raise_ValueError(MP_ERROR_TEXT("impossible baudrate"));
}
self->baudrate = 80000000L / (prediv * cntdiv);
spi_init_gpio(HSPI, SPI_CLK_USE_DIV);
spi_clock(HSPI, prediv, cntdiv);
}
// TODO: Make the byte order configurable too (discuss param names)
spi_tx_byte_order(HSPI, SPI_BYTE_ORDER_HIGH_TO_LOW);
spi_rx_byte_order(HSPI, SPI_BYTE_ORDER_HIGH_TO_LOW);
CLEAR_PERI_REG_MASK(SPI_USER(HSPI), SPI_FLASH_MODE | SPI_USR_MISO |
SPI_USR_ADDR | SPI_USR_COMMAND | SPI_USR_DUMMY);
// Clear Dual or Quad lines transmission mode
CLEAR_PERI_REG_MASK(SPI_CTRL(HSPI), SPI_QIO_MODE | SPI_DIO_MODE |
SPI_DOUT_MODE | SPI_QOUT_MODE);
spi_mode(HSPI, self->phase, self->polarity);
}
mp_obj_t machine_hspi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// args[0] holds the id of the peripheral
if (args[0] != MP_OBJ_NEW_SMALL_INT(1)) {
// FlashROM is on SPI0, so far we don't support its usage
mp_raise_ValueError(NULL);
}
machine_hspi_obj_t *self = m_new_obj(machine_hspi_obj_t);
self->base.type = &machine_hspi_type;
// set defaults
self->baudrate = 80000000L;
self->polarity = 0;
self->phase = 0;
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
machine_hspi_init((mp_obj_base_t *)self, n_args - 1, args + 1, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
STATIC const mp_machine_spi_p_t machine_hspi_p = {
.init = machine_hspi_init,
.transfer = machine_hspi_transfer,
};
const mp_obj_type_t machine_hspi_type = {
{ &mp_type_type },
.name = MP_QSTR_HSPI,
.print = machine_hspi_print,
.make_new = mp_machine_spi_make_new, // delegate to master constructor
.protocol = &machine_hspi_p,
.locals_dict = (mp_obj_dict_t *)&mp_machine_spi_locals_dict,
};
#endif // MICROPY_PY_MACHINE_SPI