circuitpython/main.c
Scott Shawcroft 6ef8639971
Rework safe mode and have heap overwrite trigger it.
This creates a common safe mode mechanic that ports can share.
As a result, the nRF52 now has safe mode support as well.

The common safe mode adds a 700ms delay at startup where a reset
during that window will cause a reset into safe mode. This window
is designated by a yellow status pixel and flashing the single led
three times.

A couple NeoPixel fixes are included for the nRF52 as well.

Fixes #1034. Fixes #990. Fixes #615.
2018-12-06 14:24:20 -08:00

450 lines
16 KiB
C
Executable File

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2016-2017 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "genhdr/mpversion.h"
#include "py/nlr.h"
#include "py/compile.h"
#include "py/frozenmod.h"
#include "py/mphal.h"
#include "py/runtime.h"
#include "py/repl.h"
#include "py/gc.h"
#include "py/stackctrl.h"
#include "lib/mp-readline/readline.h"
#include "lib/utils/pyexec.h"
#include "mpconfigboard.h"
#include "supervisor/cpu.h"
#include "supervisor/memory.h"
#include "supervisor/port.h"
#include "supervisor/filesystem.h"
#include "supervisor/shared/autoreload.h"
#include "supervisor/shared/translate.h"
#include "supervisor/shared/rgb_led_status.h"
#include "supervisor/shared/safe_mode.h"
#include "supervisor/shared/status_leds.h"
#include "supervisor/shared/stack.h"
#include "supervisor/serial.h"
#ifdef MICROPY_PY_NETWORK
#include "shared-module/network/__init__.h"
#endif
void do_str(const char *src, mp_parse_input_kind_t input_kind) {
mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, src, strlen(src), 0);
if (lex == NULL) {
//printf("MemoryError: lexer could not allocate memory\n");
return;
}
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
qstr source_name = lex->source_name;
mp_parse_tree_t parse_tree = mp_parse(lex, input_kind);
mp_obj_t module_fun = mp_compile(&parse_tree, source_name, MP_EMIT_OPT_NONE, true);
mp_call_function_0(module_fun);
nlr_pop();
} else {
// uncaught exception
mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val);
}
}
void start_mp(supervisor_allocation* heap) {
reset_status_led();
autoreload_stop();
// Stack limit should be less than real stack size, so we have a chance
// to recover from limit hit. (Limit is measured in bytes.)
mp_stack_ctrl_init();
mp_stack_set_limit(stack_alloc->length - 1024);
#if MICROPY_MAX_STACK_USAGE
// _ezero (same as _ebss) is an int, so start 4 bytes above it.
mp_stack_set_bottom(stack_alloc->ptr);
mp_stack_fill_with_sentinel();
#endif
// Sync the file systems in case any used RAM from the GC to cache. As soon
// as we re-init the GC all bets are off on the cache.
filesystem_flush();
// Clear the readline history. It references the heap we're about to destroy.
readline_init0();
#if MICROPY_ENABLE_GC
gc_init(heap->ptr, heap->ptr + heap->length / 4);
#endif
mp_init();
mp_obj_list_init(mp_sys_path, 0);
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_));
// Frozen modules are in their own pseudo-dir, e.g., ".frozen".
// Prioritize .frozen over /lib.
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_FROZEN_FAKE_DIR_QSTR));
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_lib));
mp_obj_list_init(mp_sys_argv, 0);
#if MICROPY_PY_NETWORK
network_module_init();
#endif
}
void stop_mp(void) {
#if MICROPY_PY_NETWORK
network_module_deinit();
#endif
}
#define STRING_LIST(...) {__VA_ARGS__, ""}
// Look for the first file that exists in the list of filenames, using mp_import_stat().
// Return its index. If no file found, return -1.
const char* first_existing_file_in_list(const char ** filenames) {
for (int i = 0; filenames[i] != (char*)""; i++) {
mp_import_stat_t stat = mp_import_stat(filenames[i]);
if (stat == MP_IMPORT_STAT_FILE) {
return filenames[i];
}
}
return NULL;
}
bool maybe_run_list(const char ** filenames, pyexec_result_t* exec_result) {
const char* filename = first_existing_file_in_list(filenames);
if (filename == NULL) {
return false;
}
mp_hal_stdout_tx_str(filename);
const compressed_string_t* compressed = translate(" output:\n");
char decompressed[compressed->length];
decompress(compressed, decompressed);
mp_hal_stdout_tx_str(decompressed);
pyexec_file(filename, exec_result);
return true;
}
bool run_code_py(safe_mode_t safe_mode) {
bool serial_connected_at_start = serial_connected();
#ifdef CIRCUITPY_AUTORELOAD_DELAY_MS
if (serial_connected_at_start) {
serial_write("\n");
if (autoreload_is_enabled()) {
serial_write_compressed(translate("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\n"));
} else if (safe_mode != NO_SAFE_MODE) {
serial_write_compressed(translate("Running in safe mode! Auto-reload is off.\n"));
} else if (!autoreload_is_enabled()) {
serial_write_compressed(translate("Auto-reload is off.\n"));
}
}
#endif
pyexec_result_t result;
result.return_code = 0;
result.exception_type = NULL;
result.exception_line = 0;
bool found_main = false;
if (safe_mode != NO_SAFE_MODE) {
serial_write_compressed(translate("Running in safe mode! Not running saved code.\n"));
} else {
new_status_color(MAIN_RUNNING);
const char *supported_filenames[] = STRING_LIST("code.txt", "code.py", "main.py", "main.txt");
const char *double_extension_filenames[] = STRING_LIST("code.txt.py", "code.py.txt", "code.txt.txt","code.py.py",
"main.txt.py", "main.py.txt", "main.txt.txt","main.py.py");
stack_resize();
filesystem_flush();
supervisor_allocation* heap = allocate_remaining_memory();
start_mp(heap);
found_main = maybe_run_list(supported_filenames, &result);
if (!found_main){
found_main = maybe_run_list(double_extension_filenames, &result);
if (found_main) {
serial_write_compressed(translate("WARNING: Your code filename has two extensions\n"));
}
}
stop_mp();
free_memory(heap);
reset_port();
reset_board();
reset_status_led();
if (result.return_code & PYEXEC_FORCED_EXIT) {
return reload_requested;
}
}
// Wait for connection or character.
bool serial_connected_before_animation = false;
rgb_status_animation_t animation;
prep_rgb_status_animation(&result, found_main, safe_mode, &animation);
while (true) {
#ifdef CIRCUITPY_SUPERVISOR_BACKGROUND
CIRCUITPY_SUPERVISOR_BACKGROUND
#endif
if (reload_requested) {
return true;
}
if (serial_connected() && serial_bytes_available()) {
// Skip REPL if reload was requested.
return (serial_read() == CHAR_CTRL_D);
}
if (!serial_connected_before_animation && serial_connected()) {
if (serial_connected_at_start) {
serial_write("\n\n");
}
if (!serial_connected_at_start) {
if (autoreload_is_enabled()) {
serial_write_compressed(translate("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\n"));
} else {
serial_write_compressed(translate("Auto-reload is off.\n"));
}
}
print_safe_mode_message(safe_mode);
serial_write("\n");
serial_write_compressed(translate("Press any key to enter the REPL. Use CTRL-D to reload."));
}
if (serial_connected_before_animation && !serial_connected()) {
serial_connected_at_start = false;
}
serial_connected_before_animation = serial_connected();
tick_rgb_status_animation(&animation);
}
}
void __attribute__ ((noinline)) run_boot_py(safe_mode_t safe_mode) {
// If not in safe mode, run boot before initing USB and capture output in a
// file.
if (filesystem_present() && safe_mode == NO_SAFE_MODE && MP_STATE_VM(vfs_mount_table) != NULL) {
static const char *boot_py_filenames[] = STRING_LIST("settings.txt", "settings.py", "boot.py", "boot.txt");
new_status_color(BOOT_RUNNING);
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
FIL file_pointer;
boot_output_file = &file_pointer;
// Get the base filesystem.
FATFS *fs = &((fs_user_mount_t *) MP_STATE_VM(vfs_mount_table)->obj)->fatfs;
bool have_boot_py = first_existing_file_in_list(boot_py_filenames) != NULL;
bool skip_boot_output = false;
// If there's no boot.py file that might write some changing output,
// read the existing copy of CIRCUITPY_BOOT_OUTPUT_FILE and see if its contents
// match the version info we would print anyway. If so, skip writing CIRCUITPY_BOOT_OUTPUT_FILE.
// This saves wear and tear on the flash and also prevents filesystem damage if power is lost
// during the write, which may happen due to bobbling the power connector or weak power.
static const size_t NUM_CHARS_TO_COMPARE = 160;
if (!have_boot_py && f_open(fs, boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_READ) == FR_OK) {
char file_contents[NUM_CHARS_TO_COMPARE];
UINT chars_read = 0;
f_read(boot_output_file, file_contents, NUM_CHARS_TO_COMPARE, &chars_read);
f_close(boot_output_file);
skip_boot_output =
// + 2 accounts for \r\n.
chars_read == strlen(MICROPY_FULL_VERSION_INFO) + 2 &&
strncmp(file_contents, MICROPY_FULL_VERSION_INFO, strlen(MICROPY_FULL_VERSION_INFO)) == 0;
}
if (!skip_boot_output) {
// Wait 1.5 seconds before opening CIRCUITPY_BOOT_OUTPUT_FILE for write,
// in case power is momentary or will fail shortly due to, say a low, battery.
mp_hal_delay_ms(1500);
// USB isn't up, so we can write the file.
filesystem_writable_by_python(true);
f_open(fs, boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_WRITE | FA_CREATE_ALWAYS);
// Switch the filesystem back to non-writable by Python now instead of later,
// since boot.py might change it back to writable.
filesystem_writable_by_python(false);
// Write version info to boot_out.txt.
mp_hal_stdout_tx_str(MICROPY_FULL_VERSION_INFO);
mp_hal_stdout_tx_str("\r\n");
}
#endif
// TODO(tannewt): Allocate temporary space to hold custom usb descriptors.
filesystem_flush();
supervisor_allocation* heap = allocate_remaining_memory();
start_mp(heap);
// TODO(tannewt): Re-add support for flashing boot error output.
bool found_boot = maybe_run_list(boot_py_filenames, NULL);
(void) found_boot;
#ifdef CIRCUITPY_BOOT_OUTPUT_FILE
if (!skip_boot_output) {
f_close(boot_output_file);
filesystem_flush();
}
boot_output_file = NULL;
#endif
// Reset to remove any state that boot.py setup. It should only be used to
// change internal state that's not in the heap.
reset_port();
reset_board();
stop_mp();
free_memory(heap);
}
}
int run_repl(void) {
int exit_code = PYEXEC_FORCED_EXIT;
stack_resize();
filesystem_flush();
supervisor_allocation* heap = allocate_remaining_memory();
start_mp(heap);
autoreload_suspend();
new_status_color(REPL_RUNNING);
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
exit_code = pyexec_raw_repl();
} else {
exit_code = pyexec_friendly_repl();
}
reset_port();
reset_board();
stop_mp();
free_memory(heap);
autoreload_resume();
return exit_code;
}
int __attribute__((used)) main(void) {
memory_init();
// initialise the cpu and peripherals
safe_mode_t safe_mode = port_init();
// Turn on LEDs
init_status_leds();
rgb_led_status_init();
// Wait briefly to give a reset window where we'll enter safe mode after the reset.
if (safe_mode == NO_SAFE_MODE) {
safe_mode = wait_for_safe_mode_reset();
}
stack_init();
// Create a new filesystem only if we're not in a safe mode.
// A power brownout here could make it appear as if there's
// no SPI flash filesystem, and we might erase the existing one.
filesystem_init(safe_mode == NO_SAFE_MODE, false);
// Reset everything and prep MicroPython to run boot.py.
reset_port();
reset_board();
// Turn on autoreload by default but before boot.py in case it wants to change it.
autoreload_enable();
// By default our internal flash is readonly to local python code and
// writable over USB. Set it here so that boot.py can change it.
filesystem_writable_by_python(false);
run_boot_py(safe_mode);
// Start serial and HID after giving boot.py a chance to tweak behavior.
serial_init();
// Boot script is finished, so now go into REPL/main mode.
int exit_code = PYEXEC_FORCED_EXIT;
bool skip_repl = true;
bool first_run = true;
for (;;) {
if (!skip_repl) {
exit_code = run_repl();
}
if (exit_code == PYEXEC_FORCED_EXIT) {
if (!first_run) {
serial_write_compressed(translate("soft reboot\n"));
}
first_run = false;
skip_repl = run_code_py(safe_mode);
} else if (exit_code != 0) {
break;
}
}
mp_deinit();
return 0;
}
void gc_collect(void) {
gc_collect_start();
mp_uint_t regs[10];
mp_uint_t sp = cpu_get_regs_and_sp(regs);
// This collects root pointers from the VFS mount table. Some of them may
// have lost their references in the VM even though they are mounted.
gc_collect_root((void**)&MP_STATE_VM(vfs_mount_table), sizeof(mp_vfs_mount_t) / sizeof(mp_uint_t));
// This naively collects all object references from an approximate stack
// range.
gc_collect_root((void**)sp, ((uint32_t)&_estack - sp) / sizeof(uint32_t));
gc_collect_end();
}
void NORETURN nlr_jump_fail(void *val) {
reset_into_safe_mode(MICROPY_NLR_JUMP_FAIL);
while (true) {}
}
void NORETURN __fatal_error(const char *msg) {
reset_into_safe_mode(MICROPY_FATAL_ERROR);
while (true) {}
}
#ifndef NDEBUG
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
mp_printf(&mp_plat_print, "Assertion '%s' failed, at file %s:%d\n", expr, file, line);
__fatal_error("Assertion failed");
}
#endif