circuitpython/ports/stm/supervisor/internal_flash.c

326 lines
11 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2020 Lucian Copeland for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "supervisor/internal_flash.h"
#include <stdint.h>
#include <string.h>
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "py/mphal.h"
#include "py/obj.h"
#include "py/runtime.h"
#include "lib/oofatfs/ff.h"
#include "supervisor/flash.h"
#include "supervisor/shared/safe_mode.h"
#include STM32_HAL_H
typedef struct {
uint32_t base_address;
uint32_t sector_size;
uint32_t sector_count;
} flash_layout_t;
/*------------------------------------------------------------------*/
/* Internal Flash API
*------------------------------------------------------------------*/
#if defined(STM32F4)
STATIC const flash_layout_t flash_layout[] = {
{ 0x08000000, 0x04000, 4 },
{ 0x08010000, 0x10000, 1 },
{ 0x08020000, 0x20000, 3 },
#if defined(FLASH_SECTOR_8)
{ 0x08080000, 0x20000, 4 },
#endif
#if defined(FLASH_SECTOR_12)
{ 0x08100000, 0x04000, 4 },
{ 0x08110000, 0x10000, 1 },
{ 0x08120000, 0x20000, 7 },
#endif
};
STATIC uint8_t _flash_cache[0x4000] __attribute__((aligned(4)));
#elif defined(STM32F7)
// FLASH_FLAG_PGSERR (Programming Sequence Error) was renamed to
// FLASH_FLAG_ERSERR (Erasing Sequence Error) in STM32F7
#define FLASH_FLAG_PGSERR FLASH_FLAG_ERSERR
#if defined(STM32F722xx) || defined(STM32F723xx) || defined(STM32F732xx) || defined(STM32F733xx)
static const flash_layout_t flash_layout[] = {
{ 0x08000000, 0x04000, 4 },
{ 0x08010000, 0x10000, 1 },
{ 0x08020000, 0x20000, 3 },
};
STATIC uint8_t _flash_cache[0x4000] __attribute__((aligned(4)));
#else
static const flash_layout_t flash_layout[] = {
{ 0x08000000, 0x08000, 4 },
{ 0x08020000, 0x20000, 1 },
{ 0x08040000, 0x40000, 3 },
};
STATIC uint8_t _flash_cache[0x8000] __attribute__((aligned(4)));
#endif
#elif defined(STM32H7)
STATIC const flash_layout_t flash_layout[] = {
{ 0x08000000, 0x20000, 16 },
};
STATIC uint8_t _flash_cache[0x20000] __attribute__((aligned(4)));
#else
#error Unsupported processor
#endif
#define NO_CACHE 0xffffffff
#define MAX_CACHE 0x4000
STATIC uint32_t _cache_flash_addr = NO_CACHE;
#if defined(STM32H7)
// get the bank of a given flash address
STATIC uint32_t get_bank(uint32_t addr) {
if (READ_BIT(FLASH->OPTCR, FLASH_OPTCR_SWAP_BANK) == 0) {
// no bank swap
if (addr < (FLASH_BASE + FLASH_BANK_SIZE)) {
return FLASH_BANK_1;
} else {
return FLASH_BANK_2;
}
} else {
// bank swap
if (addr < (FLASH_BASE + FLASH_BANK_SIZE)) {
return FLASH_BANK_2;
} else {
return FLASH_BANK_1;
}
}
}
#endif
// Return the sector of a given flash address.
uint32_t flash_get_sector_info(uint32_t addr, uint32_t *start_addr, uint32_t *size) {
if (addr >= flash_layout[0].base_address) {
uint32_t sector_index = 0;
for (uint8_t i = 0; i < MP_ARRAY_SIZE(flash_layout); ++i) {
for (uint8_t j = 0; j < flash_layout[i].sector_count; ++j) {
uint32_t sector_start_next = flash_layout[i].base_address
+ (j + 1) * flash_layout[i].sector_size;
if (addr < sector_start_next) {
if (start_addr != NULL) {
*start_addr = flash_layout[i].base_address
+ j * flash_layout[i].sector_size;
}
if (size != NULL) {
*size = flash_layout[i].sector_size;
}
return sector_index;
}
++sector_index;
}
}
}
return 0;
}
void supervisor_flash_init(void) {
}
uint32_t supervisor_flash_get_block_size(void) {
return FILESYSTEM_BLOCK_SIZE;
}
uint32_t supervisor_flash_get_block_count(void) {
return INTERNAL_FLASH_FILESYSTEM_NUM_BLOCKS;
}
void port_internal_flash_flush(void) {
if (_cache_flash_addr == NO_CACHE) {
return;
}
#if defined(STM32H7)
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS_BANK1 | FLASH_FLAG_ALL_ERRORS_BANK2);
#else
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR |
FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR);
#endif
// set up for erase
FLASH_EraseInitTypeDef EraseInitStruct;
EraseInitStruct.TypeErase = TYPEERASE_SECTORS;
EraseInitStruct.VoltageRange = VOLTAGE_RANGE_3; // voltage range needs to be 2.7V to 3.6V
// get the sector information
uint32_t sector_size;
uint32_t sector_start_addr = 0xffffffff;
#if defined(STM32H7)
EraseInitStruct.Banks = get_bank(_cache_flash_addr);
#endif
EraseInitStruct.Sector = flash_get_sector_info(_cache_flash_addr, &sector_start_addr, &sector_size);
EraseInitStruct.NbSectors = 1;
if (sector_size > sizeof(_flash_cache) || sector_start_addr == 0xffffffff) {
reset_into_safe_mode(FLASH_WRITE_FAIL);
}
// Skip if data is the same
if (memcmp(_flash_cache, (void *)_cache_flash_addr, sector_size) != 0) {
// unlock flash
HAL_FLASH_Unlock();
// erase the sector
uint32_t SectorError = 0;
if (HAL_FLASHEx_Erase(&EraseInitStruct, &SectorError) != HAL_OK) {
// error occurred during sector erase
HAL_FLASH_Lock(); // lock the flash
reset_into_safe_mode(FLASH_WRITE_FAIL);
}
uint32_t *cache_addr = (uint32_t *)_flash_cache;
#if defined(STM32H7)
for (uint32_t i = 0; i < (sector_size / 32); i++) {
// Note that the STM32H7 HAL interface differs by taking an address, not 64 bit data
if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_FLASHWORD, sector_start_addr,
(uint32_t)cache_addr) != HAL_OK) {
// error occurred during flash write
HAL_FLASH_Lock(); // lock the flash
reset_into_safe_mode(FLASH_WRITE_FAIL);
}
// RAM memory is by word (4 byte), but flash memory is by byte
cache_addr += 8;
sector_start_addr += 32;
}
#else // STM32F4
// program the flash word by word
for (uint32_t i = 0; i < sector_size / 4; i++) {
if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, sector_start_addr,
(uint64_t)*cache_addr) != HAL_OK) {
// error occurred during flash write
HAL_FLASH_Lock(); // lock the flash
reset_into_safe_mode(FLASH_WRITE_FAIL);
}
// RAM memory is by word (4 byte), but flash memory is by byte
cache_addr += 1;
sector_start_addr += 4;
}
#endif
// lock the flash
HAL_FLASH_Lock();
}
}
static uint32_t convert_block_to_flash_addr(uint32_t block) {
if (0 <= block && block < INTERNAL_FLASH_FILESYSTEM_NUM_BLOCKS) {
// a block in partition 1
return INTERNAL_FLASH_FILESYSTEM_START_ADDR + block * FILESYSTEM_BLOCK_SIZE;
}
// bad block
return -1;
}
mp_uint_t supervisor_flash_read_blocks(uint8_t *dest, uint32_t block, uint32_t num_blocks) {
int32_t src = convert_block_to_flash_addr(block);
if (src == -1) {
// bad block number
return false;
}
// Determine whether the read is contained within the sector
uint32_t sector_size;
uint32_t sector_start_addr;
flash_get_sector_info(src, &sector_start_addr, &sector_size);
// Count how many blocks are left in the sector
uint32_t count = (sector_size - (src - sector_start_addr)) / FILESYSTEM_BLOCK_SIZE;
count = MIN(num_blocks, count);
if (count < num_blocks && _cache_flash_addr == sector_start_addr) {
// Read is contained in the cache, so just read cache
memcpy(dest, (_flash_cache + (src - sector_start_addr)), FILESYSTEM_BLOCK_SIZE * num_blocks);
} else {
// The read spans multiple sectors or is in another sector
// Must write out anything in cache before trying to read.
supervisor_flash_flush();
memcpy(dest, (uint8_t *)src, FILESYSTEM_BLOCK_SIZE * num_blocks);
}
return 0; // success
}
mp_uint_t supervisor_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) {
while (num_blocks) {
int32_t dest = convert_block_to_flash_addr(block_num);
if (dest == -1) {
// bad block number
return false;
}
// unlock flash
HAL_FLASH_Unlock();
uint32_t sector_size;
uint32_t sector_start_addr;
flash_get_sector_info(dest, &sector_start_addr, &sector_size);
// Fail for any sector outside what's supported by the cache
if (sector_size > sizeof(_flash_cache)) {
reset_into_safe_mode(FLASH_WRITE_FAIL);
}
// Find how many blocks are left in the sector
uint32_t count = (sector_size - (dest - sector_start_addr)) / FILESYSTEM_BLOCK_SIZE;
count = MIN(num_blocks, count);
if (_cache_flash_addr != sector_start_addr) {
// Write out anything in cache before overwriting it.
supervisor_flash_flush();
_cache_flash_addr = sector_start_addr;
// Copy the current contents of the entire page into the cache.
memcpy(_flash_cache, (void *)sector_start_addr, sector_size);
}
// Overwrite part or all of the sector cache with the src data.
memcpy(_flash_cache + (dest - sector_start_addr), src, count * FILESYSTEM_BLOCK_SIZE);
// adjust for next run
block_num += count;
src += count * FILESYSTEM_BLOCK_SIZE;
num_blocks -= count;
}
return 0; // success
}
void supervisor_flash_release_cache(void) {
}