208 lines
8.0 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2023 Jeff Epler for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <math.h>
#include "py/runtime.h"
#include "shared-module/synthio/Note.h"
#include "shared-bindings/synthio/Note.h"
#include "shared-bindings/synthio/__init__.h"
mp_float_t common_hal_synthio_note_get_frequency(synthio_note_obj_t *self) {
return self->frequency;
}
void common_hal_synthio_note_set_frequency(synthio_note_obj_t *self, mp_float_t value_in) {
mp_float_t val = mp_arg_validate_float_range(value_in, 0, 32767, MP_QSTR_frequency);
self->frequency = val;
self->frequency_scaled = synthio_frequency_convert_float_to_scaled(val);
}
mp_obj_t common_hal_synthio_note_get_filter_obj(synthio_note_obj_t *self) {
return self->filter_obj;
}
void common_hal_synthio_note_set_filter(synthio_note_obj_t *self, mp_obj_t filter_in) {
synthio_biquad_filter_assign(&self->filter_state, filter_in);
self->filter_obj = filter_in;
}
mp_float_t common_hal_synthio_note_get_ring_frequency(synthio_note_obj_t *self) {
return self->ring_frequency;
}
void common_hal_synthio_note_set_ring_frequency(synthio_note_obj_t *self, mp_float_t value_in) {
mp_float_t val = mp_arg_validate_float_range(value_in, 0, 32767, MP_QSTR_ring_frequency);
self->ring_frequency = val;
self->ring_frequency_scaled = synthio_frequency_convert_float_to_scaled(val);
}
mp_obj_t common_hal_synthio_note_get_panning(synthio_note_obj_t *self) {
return self->panning.obj;
}
void common_hal_synthio_note_set_panning(synthio_note_obj_t *self, mp_obj_t value_in) {
synthio_block_assign_slot(value_in, &self->panning, MP_QSTR_panning);
}
mp_obj_t common_hal_synthio_note_get_amplitude(synthio_note_obj_t *self) {
return self->amplitude.obj;
}
void common_hal_synthio_note_set_amplitude(synthio_note_obj_t *self, mp_obj_t value_in) {
synthio_block_assign_slot(value_in, &self->amplitude, MP_QSTR_amplitude);
}
mp_obj_t common_hal_synthio_note_get_bend(synthio_note_obj_t *self) {
return self->bend.obj;
}
void common_hal_synthio_note_set_bend(synthio_note_obj_t *self, mp_obj_t value_in) {
synthio_block_assign_slot(value_in, &self->bend, MP_QSTR_bend);
}
mp_obj_t common_hal_synthio_note_get_ring_bend(synthio_note_obj_t *self) {
return self->ring_bend.obj;
}
void common_hal_synthio_note_set_ring_bend(synthio_note_obj_t *self, mp_obj_t value_in) {
synthio_block_assign_slot(value_in, &self->ring_bend, MP_QSTR_ring_bend);
}
mp_obj_t common_hal_synthio_note_get_envelope_obj(synthio_note_obj_t *self) {
return self->envelope_obj;
}
void common_hal_synthio_note_set_envelope(synthio_note_obj_t *self, mp_obj_t envelope_in) {
if (envelope_in != mp_const_none) {
mp_arg_validate_type(envelope_in, (mp_obj_type_t *)&synthio_envelope_type_obj, MP_QSTR_envelope);
if (self->sample_rate != 0) {
synthio_envelope_definition_set(&self->envelope_def, envelope_in, self->sample_rate);
}
}
self->envelope_obj = envelope_in;
}
mp_obj_t common_hal_synthio_note_get_waveform_obj(synthio_note_obj_t *self) {
return self->waveform_obj;
}
void common_hal_synthio_note_set_waveform(synthio_note_obj_t *self, mp_obj_t waveform_in) {
if (waveform_in == mp_const_none) {
memset(&self->waveform_buf, 0, sizeof(self->waveform_buf));
} else {
mp_buffer_info_t bufinfo_waveform;
synthio_synth_parse_waveform(&bufinfo_waveform, waveform_in);
self->waveform_buf = bufinfo_waveform;
}
self->waveform_obj = waveform_in;
}
mp_obj_t common_hal_synthio_note_get_ring_waveform_obj(synthio_note_obj_t *self) {
return self->ring_waveform_obj;
}
void common_hal_synthio_note_set_ring_waveform(synthio_note_obj_t *self, mp_obj_t ring_waveform_in) {
if (ring_waveform_in == mp_const_none) {
memset(&self->ring_waveform_buf, 0, sizeof(self->ring_waveform_buf));
} else {
mp_buffer_info_t bufinfo_ring_waveform;
synthio_synth_parse_waveform(&bufinfo_ring_waveform, ring_waveform_in);
self->ring_waveform_buf = bufinfo_ring_waveform;
}
self->ring_waveform_obj = ring_waveform_in;
}
void synthio_note_recalculate(synthio_note_obj_t *self, int32_t sample_rate) {
if (sample_rate == self->sample_rate) {
return;
}
self->sample_rate = sample_rate;
if (self->envelope_obj != mp_const_none) {
synthio_envelope_definition_set(&self->envelope_def, self->envelope_obj, sample_rate);
}
}
void synthio_note_start(synthio_note_obj_t *self, int32_t sample_rate) {
synthio_note_recalculate(self, sample_rate);
synthio_biquad_filter_reset(&self->filter_state);
}
// Perform a pitch bend operation
//
// bend_value is in the range [0, 65535]. "no change" is 32768. The bend unit is 32768/octave.
//
// compare to (frequency_scaled * pow(2, (bend_value-32768)/32768))
// a 13-entry pitch table
#define BEND_SCALE (32768)
#define BEND_OFFSET (BEND_SCALE)
STATIC uint16_t pitch_bend_table[] = { 0, 1948, 4013, 6200, 8517, 10972, 13573, 16329, 19248, 22341, 25618, 29090, 32768 };
STATIC uint32_t pitch_bend(uint32_t frequency_scaled, int32_t bend_value) {
int octave = bend_value >> 15;
bend_value &= 0x7fff;
uint32_t bend_value_semitone = (uint32_t)bend_value * 24; // 65536/semitone
uint32_t semitone = bend_value_semitone >> 16;
uint32_t fractone = bend_value_semitone & 0xffff;
uint32_t f_lo = pitch_bend_table[semitone];
uint32_t f_hi = pitch_bend_table[semitone + 1]; // table has 13 entries, indexing with semitone=12 is OK
uint32_t f = ((f_lo * (65535 - fractone) + f_hi * fractone) >> 16) + BEND_OFFSET;
return (frequency_scaled * (uint64_t)f) >> (15 - octave);
}
#define ZERO MICROPY_FLOAT_CONST(0.)
#define ONE MICROPY_FLOAT_CONST(1.)
#define ALMOST_ONE (MICROPY_FLOAT_CONST(32767.) / 32768)
uint32_t synthio_note_step(synthio_note_obj_t *self, int32_t sample_rate, int16_t dur, uint16_t loudness[2]) {
int panning = synthio_block_slot_get_scaled(&self->panning, -ALMOST_ONE, ALMOST_ONE);
int left_panning_scaled, right_panning_scaled;
if (panning >= 0) {
left_panning_scaled = 32768;
right_panning_scaled = 32767 - panning;
} else {
right_panning_scaled = 32768;
left_panning_scaled = 32767 + panning;
}
int amplitude = synthio_block_slot_get_scaled(&self->amplitude, ZERO, ALMOST_ONE);
left_panning_scaled = (left_panning_scaled * amplitude) >> 15;
right_panning_scaled = (right_panning_scaled * amplitude) >> 15;
loudness[0] = (loudness[0] * left_panning_scaled) >> 15;
loudness[1] = (loudness[1] * right_panning_scaled) >> 15;
if (self->ring_frequency_scaled != 0) {
int ring_bend_value = synthio_block_slot_get_scaled(&self->ring_bend, -12, 12);
self->ring_frequency_bent = pitch_bend(self->ring_frequency_scaled, ring_bend_value);
}
int bend_value = synthio_block_slot_get_scaled(&self->bend, -12, 12);
uint32_t frequency_scaled = pitch_bend(self->frequency_scaled, bend_value);
return frequency_scaled;
}