337 lines
11 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Dan Halbert for Adafruit Industries
* Copyright (c) 2018 Artur Pacholec
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <string.h>
#include "shared-bindings/busio/SPI.h"
#include "py/mperrno.h"
#include "py/runtime.h"
#include "nrfx_spim.h"
#include "nrf_gpio.h"
// These are in order from highest available frequency to lowest (32MHz first, then 8MHz).
STATIC spim_peripheral_t spim_peripherals[] = {
#if NRFX_CHECK(NRFX_SPIM3_ENABLED)
// SPIM3 exists only on nRF52840 and supports 32MHz max. All other SPIM's are only 8MHz max.
// Allocate SPIM3 first.
{ .spim = NRFX_SPIM_INSTANCE(3),
.max_frequency = 32000000,
.max_xfer_size = MIN(SPIM3_BUFFER_SIZE, (1UL << SPIM3_EASYDMA_MAXCNT_SIZE) - 1)
},
#endif
#if NRFX_CHECK(NRFX_SPIM2_ENABLED)
// SPIM2 is not shared with a TWIM, so allocate before the shared ones.
{ .spim = NRFX_SPIM_INSTANCE(2),
.max_frequency = 8000000,
.max_xfer_size = (1UL << SPIM2_EASYDMA_MAXCNT_SIZE) - 1
},
#endif
#if NRFX_CHECK(NRFX_SPIM1_ENABLED)
// SPIM1 and TWIM1 share an address.
{ .spim = NRFX_SPIM_INSTANCE(1),
.max_frequency = 8000000,
.max_xfer_size = (1UL << SPIM1_EASYDMA_MAXCNT_SIZE) - 1
},
#endif
#if NRFX_CHECK(NRFX_SPIM0_ENABLED)
// SPIM0 and TWIM0 share an address.
{ .spim = NRFX_SPIM_INSTANCE(0),
.max_frequency = 8000000,
.max_xfer_size = (1UL << SPIM0_EASYDMA_MAXCNT_SIZE) - 1
},
#endif
};
STATIC bool never_reset[MP_ARRAY_SIZE(spim_peripherals)];
// Separate RAM area for SPIM3 transmit buffer to avoid SPIM3 hardware errata.
// https://infocenter.nordicsemi.com/index.jsp?topic=%2Ferrata_nRF52840_Rev2%2FERR%2FnRF52840%2FRev2%2Flatest%2Fanomaly_840_198.html
extern uint32_t _spim3_ram;
STATIC uint8_t *spim3_transmit_buffer = (uint8_t *) &_spim3_ram;
void spi_reset(void) {
for (size_t i = 0 ; i < MP_ARRAY_SIZE(spim_peripherals); i++) {
if (never_reset[i]) {
continue;
}
nrfx_spim_uninit(&spim_peripherals[i].spim);
}
}
void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) {
for (size_t i = 0 ; i < MP_ARRAY_SIZE(spim_peripherals); i++) {
if (self->spim_peripheral == &spim_peripherals[i]) {
never_reset[i] = true;
never_reset_pin_number(self->clock_pin_number);
never_reset_pin_number(self->MOSI_pin_number);
never_reset_pin_number(self->MISO_pin_number);
break;
}
}
}
// Convert frequency to clock-speed-dependent value. Choose the next lower baudrate if in between
// available baudrates.
static nrf_spim_frequency_t baudrate_to_spim_frequency(const uint32_t baudrate) {
static const struct {
const uint32_t boundary;
nrf_spim_frequency_t spim_frequency;
} baudrate_map[] = {
#ifdef SPIM_FREQUENCY_FREQUENCY_M32
{ 32000000, NRF_SPIM_FREQ_32M },
#endif
#ifdef SPIM_FREQUENCY_FREQUENCY_M16
{ 16000000, NRF_SPIM_FREQ_16M },
#endif
{ 8000000, NRF_SPIM_FREQ_8M },
{ 4000000, NRF_SPIM_FREQ_4M },
{ 2000000, NRF_SPIM_FREQ_2M },
{ 1000000, NRF_SPIM_FREQ_1M },
{ 500000, NRF_SPIM_FREQ_500K },
{ 250000, NRF_SPIM_FREQ_250K },
{ 0, NRF_SPIM_FREQ_125K },
};
size_t i = 0;
uint32_t boundary;
do {
boundary = baudrate_map[i].boundary;
if (baudrate >= boundary) {
return baudrate_map[i].spim_frequency;
}
i++;
} while (boundary != 0);
// Should not get here.
return 0;
}
void common_hal_busio_spi_construct(busio_spi_obj_t *self, const mcu_pin_obj_t * clock, const mcu_pin_obj_t * mosi, const mcu_pin_obj_t * miso) {
// Find a free instance, with most desirable (highest freq and not shared) allocated first.
self->spim_peripheral = NULL;
for (size_t i = 0 ; i < MP_ARRAY_SIZE(spim_peripherals); i++) {
if ((spim_peripherals[i].spim.p_reg->ENABLE & SPIM_ENABLE_ENABLE_Msk) == 0) {
self->spim_peripheral = &spim_peripherals[i];
break;
}
}
if (self->spim_peripheral == NULL) {
mp_raise_ValueError(translate("All SPI peripherals are in use"));
}
nrfx_spim_config_t config = NRFX_SPIM_DEFAULT_CONFIG(NRFX_SPIM_PIN_NOT_USED, NRFX_SPIM_PIN_NOT_USED,
NRFX_SPIM_PIN_NOT_USED, NRFX_SPIM_PIN_NOT_USED);
config.frequency = baudrate_to_spim_frequency(self->spim_peripheral->max_frequency);
config.sck_pin = clock->number;
self->clock_pin_number = clock->number;
claim_pin(clock);
if (mosi != NULL) {
config.mosi_pin = mosi->number;
self->MOSI_pin_number = mosi->number;
claim_pin(mosi);
} else {
self->MOSI_pin_number = NO_PIN;
}
if (miso != NULL) {
config.miso_pin = miso->number;
self->MISO_pin_number = mosi->number;
claim_pin(miso);
} else {
self->MISO_pin_number = NO_PIN;
}
nrfx_err_t err = nrfx_spim_init(&self->spim_peripheral->spim, &config, NULL, NULL);
if (err != NRFX_SUCCESS) {
common_hal_busio_spi_deinit(self);
mp_raise_OSError(MP_EIO);
}
}
bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) {
return self->clock_pin_number == NO_PIN;
}
void common_hal_busio_spi_deinit(busio_spi_obj_t *self) {
if (common_hal_busio_spi_deinited(self))
return;
nrfx_spim_uninit(&self->spim_peripheral->spim);
reset_pin_number(self->clock_pin_number);
reset_pin_number(self->MOSI_pin_number);
reset_pin_number(self->MISO_pin_number);
}
bool common_hal_busio_spi_configure(busio_spi_obj_t *self, uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) {
// nrf52 does not support 16 bit
if (bits != 8) {
return false;
}
// Set desired frequency, rounding down, and don't go above available frequency for this SPIM.
nrf_spim_frequency_set(self->spim_peripheral->spim.p_reg,
baudrate_to_spim_frequency(MIN(baudrate, self->spim_peripheral->max_frequency)));
nrf_spim_mode_t mode = NRF_SPIM_MODE_0;
if (polarity) {
mode = (phase) ? NRF_SPIM_MODE_3 : NRF_SPIM_MODE_2;
} else {
mode = (phase) ? NRF_SPIM_MODE_1 : NRF_SPIM_MODE_0;
}
nrf_spim_configure(self->spim_peripheral->spim.p_reg, mode, NRF_SPIM_BIT_ORDER_MSB_FIRST);
return true;
}
bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) {
bool grabbed_lock = false;
// NRFX_CRITICAL_SECTION_ENTER();
if (!self->has_lock) {
grabbed_lock = true;
self->has_lock = true;
}
// NRFX_CRITICAL_SECTION_EXIT();
return grabbed_lock;
}
bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) {
return self->has_lock;
}
void common_hal_busio_spi_unlock(busio_spi_obj_t *self) {
self->has_lock = false;
}
bool common_hal_busio_spi_write(busio_spi_obj_t *self, const uint8_t *data, size_t len) {
const bool is_spim3 = self->spim_peripheral->spim.p_reg == NRF_SPIM3;
uint8_t *next_chunk = (uint8_t *) data;
while (len > 0) {
size_t chunk_size = MIN(len, self->spim_peripheral->max_xfer_size);
uint8_t *chunk = next_chunk;
if (is_spim3) {
// If SPIM3, copy into unused RAM block, and do DMA from there.
memcpy(spim3_transmit_buffer, chunk, chunk_size);
chunk = spim3_transmit_buffer;
}
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_TX(chunk, chunk_size);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS) {
return false;
}
next_chunk += chunk_size;
len -= chunk_size;
}
return true;
}
bool common_hal_busio_spi_read(busio_spi_obj_t *self, uint8_t *data, size_t len, uint8_t write_value) {
uint8_t *next_chunk = data;
while (len > 0) {
size_t chunk_size = MIN(len, self->spim_peripheral->max_xfer_size);
const nrfx_spim_xfer_desc_t xfer = NRFX_SPIM_XFER_RX(next_chunk, chunk_size);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS) {
return false;
}
next_chunk += chunk_size;
len -= chunk_size;
}
return true;
}
bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, uint8_t *data_out, uint8_t *data_in, size_t len) {
const bool is_spim3 = self->spim_peripheral->spim.p_reg == NRF_SPIM3;
uint8_t *next_chunk_out = data_out;
uint8_t *next_chunk_in = data_in;
while (len > 0) {
uint8_t *chunk_out = next_chunk_out;
size_t chunk_size = MIN(len, self->spim_peripheral->max_xfer_size);
if (is_spim3) {
// If SPIM3, copy into unused RAM block, and do DMA from there.
memcpy(spim3_transmit_buffer, chunk_out, chunk_size);
chunk_out = spim3_transmit_buffer;
}
const nrfx_spim_xfer_desc_t xfer =
NRFX_SPIM_SINGLE_XFER(next_chunk_out, chunk_size,
next_chunk_in, chunk_size);
if (nrfx_spim_xfer(&self->spim_peripheral->spim, &xfer, 0) != NRFX_SUCCESS) {
return false;
}
next_chunk_out += chunk_size;
next_chunk_in += chunk_size;
len -= chunk_size;
}
return true;
}
uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t* self) {
switch (self->spim_peripheral->spim.p_reg->FREQUENCY) {
case NRF_SPIM_FREQ_125K:
return 125000;
case NRF_SPIM_FREQ_250K:
return 250000;
case NRF_SPIM_FREQ_500K:
return 500000;
case NRF_SPIM_FREQ_1M:
return 1000000;
case NRF_SPIM_FREQ_2M:
return 2000000;
case NRF_SPIM_FREQ_4M:
return 4000000;
case NRF_SPIM_FREQ_8M:
return 8000000;
#ifdef SPIM_FREQUENCY_FREQUENCY_M16
case NRF_SPIM_FREQ_16M:
return 16000000;
#endif
#ifdef SPIM_FREQUENCY_FREQUENCY_M32
case NRF_SPIM_FREQ_32M:
return 32000000;
#endif
default:
return 0;
}
}
uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t* self) {
return (self->spim_peripheral->spim.p_reg->CONFIG & SPIM_CONFIG_CPHA_Msk) >> SPIM_CONFIG_CPHA_Pos;
}
uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t* self) {
return (self->spim_peripheral->spim.p_reg->CONFIG & SPIM_CONFIG_CPOL_Msk) >> SPIM_CONFIG_CPOL_Pos;
}