002f7d1ad7
Summarized this squashed PR replaces the hal/ folder in the port. This has been replaced the official HAL layer from Nordic Semiconductor; https://github.com/NordicSemiconductor/nrfx. A Git submodule has been added under lib/nrfx, for the nrfx dependency. The drivers / modules has been updated to use this new HAL layer; nrfx at v1.0.0. Also, header files and system files for nrf51/nrf52x chip variants has been deleted from the device/ folder, only keeping back the startup files written in C. All other files are now fetched from nrfx. 3 new header files in the ports/nrf/ folder has been added to configure nrfx (nrfx_config.h), logging (nrfx_log.h) and glue nrfx together with the drivers and modules from micropython (nrfx_glue.h). The PR has been a joint effort from @aykevl (Ayke van Laethem) and @glennrub. For reference, the commit log will be kept to get an overview of the changes done: * ports/nrf: Initial commit for moving hal to Nordic Semiconductor BSD-3 licensed nrfx-hal. * ports/nrf: Adding nrfx, Nordic Semiconductor BSD-3 hal layer, as git submodule checked out at lib/nrfx. * ports/nrf/modules/machine/uart: Fixing bug which set hwfc to parity excluded, always resulting in no flow control, hence corrupted output. Also adding an extra loop on uart_tx_char to prevent any tx when any ongoing tx is in progress. * ports/nrf/i2c: Moving I2C over to nrfx driver. * ports/nrf/modules/machine/i2c: Alignment. Renaming print function param 'o' to 'self_in' * ports/nrf/spi: Updating SPI machine module to use nrfx drivers. * ports/nrf: Renaming modules/machine/rtc.c/.h to rtcounter.c/.h to not confuse the peripheral with Real-Time Clock: * ports/nrf: Updating various files after renaming machine module RTC to RTCounter. * ports/nrf: Renaming RTC to RTCounter in modmachine globals dict table. Also updating object type name to reflect new module name. * ports/nrf: Fixing leftovers after renaming rtc to rtcounter. * ports/nrf: Early untested adoption of nrfx_rtc in RTCounter. Untested. * nrf/modules/machine/i2c: Improve keyword argument handling * ports/nrf/modules/temp: Updating Temp machine module to use nrfx defined hal nrf_temp.h. Moving logic of BLE stack awareness to machine module. * ports/nrf/boards/pca10040: Enable machine Temp module. * nrf/modules/machine/rtcounter: Remove magic constants. * ports/nrf: Adding base support for nrfx module logging. Adding option to disable logging of UART as it might log its own setup over UART while the peripheral is not yet set up. Logging of UART could make sense if other transport of log is used. * ports/nrf: updating nrfx_log.h with more correct parenthisis on macro grouping. * ports/nrf: Updating nrfx logging with configuration to disable logging of UART module. The pattern can be used to turn off other modules as well. However, for now UART is the only module locking itself by logging before the peripheral is configured. Logging is turned off by default, can be enabled in nrfx_config.h by setting NRFX_LOG_ENABLED=1. * ports/nrf/modules/random: Updating modrandom to use nrfx hal for rng. Not using nrfx-driver for this peripheral as its blocking mode would do the trick on RNG. Moving softdevice aware code from legacy hal to modrandom.c. * nrf: Enable Peripheral Resource Sharing. This enables TWI and SPI to be enabled at the same time. * nrf/Makefile: Define MCU sub variant (e.g. NRF51822/NRF51422) * nrf: Port TIMER peripheral to nrfx HAL. * nrf/modules/machine/uart: Optimize UART module For a nRF51, this results in a size reduction of: .text: -68 bytes .data: -56 bytes * nrf/modules/machine/uart: Don't use magic index numbers. * nrf/modules/machine/uart: Fix off-by-one error. For nrf51: .text: -40 bytes * nrf/modules/machine/rtcounter: Update for nrfx HAL. * nrf/modules/machine/i2c: Reduce RAM consumption. Reductions for the nrf51: flash: -108 bytes RAM: -72 bytes * nrf/mpconfigport: Avoid unnecessary root pointers. This saves 92 bytes of RAM. * nrf: Support SoftDevice with nrfx HAL. * nrf: Add NVMC peripheral (microbitfs) support. There is no support yet for a SoftDevice. It also fixes a potentially serious bug in start_index generation. * nrf/modules/machine/spi: Optimize SPI peripheral. nrf51: text: -340 bytes data: -72 bytes nrf52: text: -352 bytes data: -108 bytes * nrf/modules/random: Forgot to commit header file. * nrf: Make nrfx_config.h universal for all boards. * nrf: Use SoftDevice API for flash access when built for SD * nrf/drivers/bluetooth: Remove legacy HAL driver includes. These were not used anymore so can be removed. * ports/nrf/microbit: Port microbit targets to nrfx HAL Initial port of microbit modules to use nrfx HAL layer. Tested display/image and modmusic on micro:bit to verify that softpwm and ticker for nrf51 is working as expected. Changing IRQ priority on timer to priority 2, as 1 might collide if used side by side of SD110 BLE stack. The patch reserves Timer1 peripheral compile time. This is not ideal and should be resolved in seperate task. * nrf/boards/microbit: Remove custom nrfx_config.h from microbit target, adding disablement of timer1 if softpwm is enabled. * nrf/adc: Update ADC module to use nrfx * nrf/modules/machine/pwm: Updating machine PWM module to use nrfx HAL driver. examples/nrf52_pwm.py and examples/nrf52_servo.py tested on pca10040. * nrf: Removing hal folder and boards nrf5x_hal_conf.h headers. * nrf/nrfx_glue: Adding direct NVIC access for S110 BLE stack If SoftDevice s110 has not yet been initialized, the IRQ will not be forwarded to the application using the sd_nvic* function calls. Hence, direct access to cmsi nvic functions are used instead if SoftDevice is not enabled. * nrf/drivers/ticker: Setting IRQ priority 3 on Timer1 SoftDevice fails to initilize if Timer1 has been configured to priority level 2 before enabling the SD. The timer is set to priority 1, higher than BLE stack in order to provide better quality of music rendering when used with the music module. This might be too high, time will show. * nrf/examples: Updating ubluepy_temp after moving RTCounter to nrfx. * nrf: delete duplicate files from device folder which can be located in nrfx/mdk. * nrf/Makefile: Fetch system files from nrfx. Testing on each device sub-variant to figure out which system file to use. Reason for this is that nrf52.c is actually defining nrf52832. Removing NRF_DEFINES parameter setting the device in use into the same sub-variant test, as NRF52 is unique to nrf52832 when using nrfx. Without this exclusion of -DNRF52 in compilation for nrf52840, the device will be interpreted as a nrf52, hence nrf52832. Also, changing name on variable SRC_NRF_HAL to SRC_NRFX_HAL to explicitly tell the origin of the file. * nrf: Updating device #ifdefs to be more open to non-nrf51 targets. * nrf/modules/machine/uart: Removing second instance of UART for nrf52840 as it only has one non-DMA variant. * nrf/device: Removing system files as these are now used from nrfx/mdk * nrf: Moving startup files in device one level up as there is no need for deep hierarchy. * nrf: Use NRF52_SERIES defined in nrfx/mdk/nrf.h as define value when testing for both nrf52(832) and nrf52840 variants. * nrf/modules/machine/uart: Enable UART RX by default Enable rx by default after intiialization of the peripheral. Else, the nrfx driver will re-enable rx for each byte read on uart REPL, clearing the EVENT_RXDRDY before second byte, which again will make second byte get lost and read will get stuck. This happens if the bytes are transmitted nrf(51) while still processing the previous byte. Not seen on nrf52, but should also become an issue at higher speeds. This patch sets rx to always be enabled. Hence, not clearing the event between read bytes, and it will be able to detect next byte recieved upon finishing the first. * nrf/modules/machine/timer: Fixing defines excluding Timer1 if ticker/softpwm is used. * nrf: Switching import form mpconfigboard.h to mpconfigport.h in nrfx_config.h as mpconfigboard.h might define default values for defines not set by board specific header. * nrf/modules/machine/i2c: nrfx integration fixes Increasing speed to 400K. Returning Address NACK's as MP error code; MP_ENODEV. Returning MP_ETIMEOUT on all other error codes from TWI nrfx driver except the ANACK. Enabling and disabling the TWI peripheral before and after each transaction. * nrf/examples: Updating ssd1306_mod.py to split framebuffer transfer into multiple chunks * nrf/modules/machine/i2c: Return MP_EIO error if Data NACK occurs. * nrf: Addressing review comments. * nrf: Updating git submodule and users to nrfx v1.0.0. * nrf/modules/machine/adc: Update adc module to follow v1.0.0 nrfx API. * nrf/modules/machine/spi: Implement init and deinit functions Extending SPI objects with a config member such that configuration can be kept between new() and init(). Moving initialization done in new() to common init function shared between the module functions. If SPI is already configured, the SPI peripheral will be uninitialized before initalized again. Adding logic to handle initialization of polarity and phase. As well, updating default speed to 1M from 500K. * nrf/modules/machine: Removing unused nrfx includes in machine module header files |
||
---|---|---|
docs | ||
drivers | ||
examples | ||
extmod | ||
lib | ||
logo | ||
mpy-cross | ||
ports | ||
py | ||
tests | ||
tools | ||
.gitattributes | ||
.gitignore | ||
.gitmodules | ||
.travis.yml | ||
ACKNOWLEDGEMENTS | ||
CODECONVENTIONS.md | ||
CONTRIBUTING.md | ||
LICENSE | ||
README.md |
The MicroPython project
This is the MicroPython project, which aims to put an implementation of Python 3.x on microcontrollers and small embedded systems. You can find the official website at micropython.org.
WARNING: this project is in beta stage and is subject to changes of the code-base, including project-wide name changes and API changes.
MicroPython implements the entire Python 3.4 syntax (including exceptions,
with
, yield from
, etc., and additionally async
/await
keywords from
Python 3.5). The following core datatypes are provided: str
(including
basic Unicode support), bytes
, bytearray
, tuple
, list
, dict
, set
,
frozenset
, array.array
, collections.namedtuple
, classes and instances.
Builtin modules include sys
, time
, and struct
, etc. Select ports have
support for _thread
module (multithreading). Note that only a subset of
Python 3 functionality is implemented for the data types and modules.
MicroPython can execute scripts in textual source form or from precompiled bytecode, in both cases either from an on-device filesystem or "frozen" into the MicroPython executable.
See the repository http://github.com/micropython/pyboard for the MicroPython board (PyBoard), the officially supported reference electronic circuit board.
Major components in this repository:
- py/ -- the core Python implementation, including compiler, runtime, and core library.
- mpy-cross/ -- the MicroPython cross-compiler which is used to turn scripts into precompiled bytecode.
- ports/unix/ -- a version of MicroPython that runs on Unix.
- ports/stm32/ -- a version of MicroPython that runs on the PyBoard and similar STM32 boards (using ST's Cube HAL drivers).
- ports/minimal/ -- a minimal MicroPython port. Start with this if you want to port MicroPython to another microcontroller.
- tests/ -- test framework and test scripts.
- docs/ -- user documentation in Sphinx reStructuredText format. Rendered HTML documentation is available at http://docs.micropython.org (be sure to select needed board/port at the bottom left corner).
Additional components:
- ports/bare-arm/ -- a bare minimum version of MicroPython for ARM MCUs. Used mostly to control code size.
- ports/teensy/ -- a version of MicroPython that runs on the Teensy 3.1 (preliminary but functional).
- ports/pic16bit/ -- a version of MicroPython for 16-bit PIC microcontrollers.
- ports/cc3200/ -- a version of MicroPython that runs on the CC3200 from TI.
- ports/esp8266/ -- an experimental port for ESP8266 WiFi modules.
- extmod/ -- additional (non-core) modules implemented in C.
- tools/ -- various tools, including the pyboard.py module.
- examples/ -- a few example Python scripts.
The subdirectories above may include READMEs with additional info.
"make" is used to build the components, or "gmake" on BSD-based systems. You will also need bash, gcc, and Python (at least 2.7 or 3.3).
The Unix version
The "unix" port requires a standard Unix environment with gcc and GNU make. x86 and x64 architectures are supported (i.e. x86 32- and 64-bit), as well as ARM and MIPS. Making full-featured port to another architecture requires writing some assembly code for the exception handling and garbage collection. Alternatively, fallback implementation based on setjmp/longjmp can be used.
To build (see section below for required dependencies):
$ git submodule update --init
$ cd ports/unix
$ make axtls
$ make
Then to give it a try:
$ ./micropython
>>> list(5 * x + y for x in range(10) for y in [4, 2, 1])
Use CTRL-D
(i.e. EOF) to exit the shell.
Learn about command-line options (in particular, how to increase heap size
which may be needed for larger applications):
$ ./micropython --help
Run complete testsuite:
$ make test
Unix version comes with a builtin package manager called upip, e.g.:
$ ./micropython -m upip install micropython-pystone
$ ./micropython -m pystone
Browse available modules on PyPI. Standard library modules come from micropython-lib project.
External dependencies
Building MicroPython ports may require some dependencies installed.
For Unix port, libffi
library and pkg-config
tool are required. On
Debian/Ubuntu/Mint derivative Linux distros, install build-essential
(includes toolchain and make), libffi-dev
, and pkg-config
packages.
Other dependencies can be built together with MicroPython. This may be required to enable extra features or capabilities, and in recent versions of MicroPython, these may be enabled by default. To build these additional dependencies, first fetch git submodules for them:
$ git submodule update --init
Use the same command to get the latest versions of dependencies, as
they are updated from time to time. After that, in the port directory
(e.g. ports/unix/
), execute:
$ make deplibs
This will build all available dependencies (regardless whether they
are used or not). If you intend to build MicroPython with additional
options (like cross-compiling), the same set of options should be passed
to make deplibs
. To actually enable/disable use of dependencies, edit
ports/unix/mpconfigport.mk
file, which has inline descriptions of the options.
For example, to build SSL module (required for upip
tool described above,
and so enabled by dfeault), MICROPY_PY_USSL
should be set to 1.
For some ports, building required dependences is transparent, and happens automatically. They still need to be fetched with the git submodule command above.
The STM32 version
The "stm32" port requires an ARM compiler, arm-none-eabi-gcc, and associated bin-utils. For those using Arch Linux, you need arm-none-eabi-binutils, arm-none-eabi-gcc and arm-none-eabi-newlib packages. Otherwise, try here: https://launchpad.net/gcc-arm-embedded
To build:
$ git submodule update --init
$ cd ports/stm32
$ make
You then need to get your board into DFU mode. On the pyboard, connect the 3V3 pin to the P1/DFU pin with a wire (on PYBv1.0 they are next to each other on the bottom left of the board, second row from the bottom).
Then to flash the code via USB DFU to your device:
$ make deploy
This will use the included tools/pydfu.py
script. If flashing the firmware
does not work it may be because you don't have the correct permissions, and
need to use sudo make deploy
.
See the README.md file in the ports/stm32/ directory for further details.
Contributing
MicroPython is an open-source project and welcomes contributions. To be productive, please be sure to follow the Contributors' Guidelines and the Code Conventions. Note that MicroPython is licenced under the MIT license, and all contributions should follow this license.