circuitpython/shared-module/epaperdisplay/EPaperDisplay.c
Scott Shawcroft 8137e2d6d2
Switch all ports to auto-growing split heap
This simplifies allocating outside of the VM because the VM doesn't
take up all remaining memory by default.

On ESP we delegate to the IDF for allocations. For all other ports,
we use TLSF to manage an outer "port" heap. The IDF uses TLSF
internally and we use their fork for the other ports.

This also removes the dynamic C stack sizing. It wasn't often used
and is not possible with a fixed outer heap.

Fixes #8512. Fixes #7334.
2023-11-01 15:24:16 -07:00

533 lines
21 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/epaperdisplay/EPaperDisplay.h"
#include "py/gc.h"
#include "py/runtime.h"
#include "shared/runtime/interrupt_char.h"
#include "shared-bindings/displayio/ColorConverter.h"
#include "shared-bindings/microcontroller/Pin.h"
#include "shared-bindings/time/__init__.h"
#include "shared-module/displayio/__init__.h"
#include "supervisor/shared/display.h"
#include "supervisor/shared/tick.h"
#include "supervisor/usb.h"
#include <stdint.h>
#include <string.h>
#define DELAY 0x80
void common_hal_epaperdisplay_epaperdisplay_construct(epaperdisplay_epaperdisplay_obj_t *self,
mp_obj_t bus, const uint8_t *start_sequence, uint16_t start_sequence_len, mp_float_t start_up_time,
const uint8_t *stop_sequence, uint16_t stop_sequence_len,
uint16_t width, uint16_t height, uint16_t ram_width, uint16_t ram_height,
int16_t colstart, int16_t rowstart, uint16_t rotation,
uint16_t set_column_window_command, uint16_t set_row_window_command,
uint16_t set_current_column_command, uint16_t set_current_row_command,
uint16_t write_black_ram_command, bool black_bits_inverted,
uint16_t write_color_ram_command, bool color_bits_inverted, uint32_t highlight_color,
const uint8_t *refresh_sequence, uint16_t refresh_sequence_len, mp_float_t refresh_time,
const mcu_pin_obj_t *busy_pin, bool busy_state, mp_float_t seconds_per_frame,
bool chip_select, bool grayscale, bool acep, bool two_byte_sequence_length, bool address_little_endian) {
uint16_t color_depth = 1;
bool core_grayscale = true;
if (highlight_color != 0x000000) {
self->core.colorspace.tricolor = true;
self->core.colorspace.tricolor_hue = displayio_colorconverter_compute_hue(highlight_color);
self->core.colorspace.tricolor_luma = displayio_colorconverter_compute_luma(highlight_color);
} else {
self->core.colorspace.tricolor = false;
}
self->acep = acep;
self->core.colorspace.sevencolor = acep;
if (acep) {
color_depth = 4; // bits. 7 colors + clean
grayscale = false;
core_grayscale = false;
}
displayio_display_core_construct(&self->core, width, height, rotation, color_depth, core_grayscale, true, 1, true, true);
displayio_display_bus_construct(&self->bus, bus, ram_width, ram_height,
colstart, rowstart,
set_column_window_command, set_row_window_command, set_current_column_command, set_current_row_command,
false /* data_as_commands */, chip_select,
false /* SH1107_addressing */, address_little_endian);
self->write_black_ram_command = write_black_ram_command;
self->black_bits_inverted = black_bits_inverted;
self->write_color_ram_command = write_color_ram_command;
self->color_bits_inverted = color_bits_inverted;
self->refresh_time = refresh_time * 1000;
self->busy_state = busy_state;
self->refreshing = false;
self->milliseconds_per_frame = seconds_per_frame * 1000;
self->chip_select = chip_select ? CHIP_SELECT_TOGGLE_EVERY_BYTE : CHIP_SELECT_UNTOUCHED;
self->grayscale = grayscale;
self->start_sequence = start_sequence;
self->start_sequence_len = start_sequence_len;
self->start_up_time_ms = start_up_time * 1000;
self->stop_sequence = stop_sequence;
self->stop_sequence_len = stop_sequence_len;
self->refresh_sequence = refresh_sequence;
self->refresh_sequence_len = refresh_sequence_len;
self->busy.base.type = &mp_type_NoneType;
self->two_byte_sequence_length = two_byte_sequence_length;
if (busy_pin != NULL) {
self->busy.base.type = &digitalio_digitalinout_type;
common_hal_digitalio_digitalinout_construct(&self->busy, busy_pin);
common_hal_never_reset_pin(busy_pin);
}
// Clear the color memory if it isn't in use.
if (highlight_color == 0x00 && write_color_ram_command != NO_COMMAND) {
// TODO: Clear
}
// Set the group after initialization otherwise we may send pixels while we delay in
// initialization.
common_hal_epaperdisplay_epaperdisplay_set_root_group(self, &circuitpython_splash);
}
bool common_hal_epaperdisplay_epaperdisplay_set_root_group(epaperdisplay_epaperdisplay_obj_t *self, displayio_group_t *root_group) {
return displayio_display_core_set_root_group(&self->core, root_group);
}
STATIC const displayio_area_t *epaperdisplay_epaperdisplay_get_refresh_areas(epaperdisplay_epaperdisplay_obj_t *self) {
if (self->core.full_refresh) {
self->core.area.next = NULL;
return &self->core.area;
}
const displayio_area_t *first_area = NULL;
if (self->core.current_group != NULL) {
first_area = displayio_group_get_refresh_areas(self->core.current_group, NULL);
}
if (first_area != NULL && self->bus.row_command == NO_COMMAND) {
// Do a full refresh if the display doesn't support partial updates.
self->core.area.next = NULL;
return &self->core.area;
}
return first_area;
}
uint16_t common_hal_epaperdisplay_epaperdisplay_get_width(epaperdisplay_epaperdisplay_obj_t *self) {
return displayio_display_core_get_width(&self->core);
}
uint16_t common_hal_epaperdisplay_epaperdisplay_get_height(epaperdisplay_epaperdisplay_obj_t *self) {
return displayio_display_core_get_height(&self->core);
}
STATIC void wait_for_busy(epaperdisplay_epaperdisplay_obj_t *self) {
if (self->busy.base.type == &mp_type_NoneType) {
return;
}
while (common_hal_digitalio_digitalinout_get_value(&self->busy) == self->busy_state) {
RUN_BACKGROUND_TASKS;
}
}
STATIC void send_command_sequence(epaperdisplay_epaperdisplay_obj_t *self,
bool should_wait_for_busy, const uint8_t *sequence, uint32_t sequence_len) {
uint32_t i = 0;
while (i < sequence_len) {
const uint8_t *cmd = sequence + i;
uint8_t data_size = *(cmd + 1);
bool delay = (data_size & DELAY) != 0;
const uint8_t *data = cmd + 2;
data_size &= ~DELAY;
if (self->two_byte_sequence_length) {
data_size = ((data_size & ~DELAY) << 8) + *(cmd + 2);
data = cmd + 3;
}
displayio_display_bus_begin_transaction(&self->bus);
self->bus.send(self->bus.bus, DISPLAY_COMMAND, self->chip_select, cmd, 1);
self->bus.send(self->bus.bus, DISPLAY_DATA, self->chip_select, data, data_size);
displayio_display_bus_end_transaction(&self->bus);
uint16_t delay_length_ms = 0;
if (delay) {
data_size++;
delay_length_ms = *(cmd + 1 + data_size);
if (delay_length_ms == 255) {
delay_length_ms = 500;
}
}
common_hal_time_delay_ms(delay_length_ms);
if (should_wait_for_busy) {
wait_for_busy(self);
}
i += 2 + data_size;
if (self->two_byte_sequence_length) {
i++;
}
}
}
void epaperdisplay_epaperdisplay_change_refresh_mode_parameters(epaperdisplay_epaperdisplay_obj_t *self,
mp_buffer_info_t *start_sequence, float seconds_per_frame) {
self->start_sequence = (uint8_t *)start_sequence->buf;
self->start_sequence_len = start_sequence->len;
self->milliseconds_per_frame = seconds_per_frame * 1000;
}
STATIC void epaperdisplay_epaperdisplay_start_refresh(epaperdisplay_epaperdisplay_obj_t *self) {
if (!displayio_display_bus_is_free(&self->bus)) {
// Can't acquire display bus; skip updating this display. Try next display.
return;
}
// run start sequence
self->bus.bus_reset(self->bus.bus);
common_hal_time_delay_ms(self->start_up_time_ms);
send_command_sequence(self, true, self->start_sequence, self->start_sequence_len);
displayio_display_core_start_refresh(&self->core);
}
uint32_t common_hal_epaperdisplay_epaperdisplay_get_time_to_refresh(epaperdisplay_epaperdisplay_obj_t *self) {
if (self->core.last_refresh == 0) {
return 0;
}
// Refresh at seconds per frame rate.
uint32_t elapsed_time = supervisor_ticks_ms64() - self->core.last_refresh;
if (elapsed_time > self->milliseconds_per_frame) {
return 0;
}
return self->milliseconds_per_frame - elapsed_time;
}
STATIC void epaperdisplay_epaperdisplay_finish_refresh(epaperdisplay_epaperdisplay_obj_t *self) {
// Actually refresh the display now that all pixel RAM has been updated.
send_command_sequence(self, false, self->refresh_sequence, self->refresh_sequence_len);
supervisor_enable_tick();
self->refreshing = true;
displayio_display_core_finish_refresh(&self->core);
}
mp_obj_t common_hal_epaperdisplay_epaperdisplay_get_bus(epaperdisplay_epaperdisplay_obj_t *self) {
return self->bus.bus;
}
void common_hal_epaperdisplay_epaperdisplay_set_rotation(epaperdisplay_epaperdisplay_obj_t *self, int rotation) {
bool transposed = (self->core.rotation == 90 || self->core.rotation == 270);
bool will_transposed = (rotation == 90 || rotation == 270);
if (transposed != will_transposed) {
int tmp = self->core.width;
self->core.width = self->core.height;
self->core.height = tmp;
}
displayio_display_core_set_rotation(&self->core, rotation);
if (self == &displays[0].epaper_display) {
supervisor_stop_terminal();
supervisor_start_terminal(self->core.width, self->core.height);
}
if (self->core.current_group != NULL) {
displayio_group_update_transform(self->core.current_group, &self->core.transform);
}
}
uint16_t common_hal_epaperdisplay_epaperdisplay_get_rotation(epaperdisplay_epaperdisplay_obj_t *self) {
return self->core.rotation;
}
mp_obj_t common_hal_epaperdisplay_epaperdisplay_get_root_group(epaperdisplay_epaperdisplay_obj_t *self) {
if (self->core.current_group == NULL) {
return mp_const_none;
}
return self->core.current_group;
}
STATIC bool epaperdisplay_epaperdisplay_refresh_area(epaperdisplay_epaperdisplay_obj_t *self, const displayio_area_t *area) {
uint16_t buffer_size = 128; // In uint32_ts
displayio_area_t clipped;
// Clip the area to the display by overlapping the areas. If there is no overlap then we're done.
if (!displayio_display_core_clip_area(&self->core, area, &clipped)) {
return true;
}
uint16_t subrectangles = 1;
uint16_t rows_per_buffer = displayio_area_height(&clipped);
uint8_t pixels_per_word = (sizeof(uint32_t) * 8) / self->core.colorspace.depth;
uint16_t pixels_per_buffer = displayio_area_size(&clipped);
if (displayio_area_size(&clipped) > buffer_size * pixels_per_word) {
rows_per_buffer = buffer_size * pixels_per_word / displayio_area_width(&clipped);
if (rows_per_buffer == 0) {
rows_per_buffer = 1;
}
subrectangles = displayio_area_height(&clipped) / rows_per_buffer;
if (displayio_area_height(&clipped) % rows_per_buffer != 0) {
subrectangles++;
}
pixels_per_buffer = rows_per_buffer * displayio_area_width(&clipped);
buffer_size = pixels_per_buffer / pixels_per_word;
if (pixels_per_buffer % pixels_per_word) {
buffer_size += 1;
}
}
// Allocated and shared as a uint32_t array so the compiler knows the
// alignment everywhere.
uint32_t buffer[buffer_size];
volatile uint32_t mask_length = (pixels_per_buffer / 32) + 1;
uint32_t mask[mask_length];
uint8_t passes = 1;
if (self->write_color_ram_command != NO_COMMAND) {
passes = 2;
}
for (uint8_t pass = 0; pass < passes; pass++) {
uint16_t remaining_rows = displayio_area_height(&clipped);
if (self->bus.row_command != NO_COMMAND) {
displayio_display_bus_set_region_to_update(&self->bus, &self->core, &clipped);
}
uint8_t write_command = self->write_black_ram_command;
if (pass == 1) {
write_command = self->write_color_ram_command;
}
displayio_display_bus_begin_transaction(&self->bus);
self->bus.send(self->bus.bus, DISPLAY_COMMAND, self->chip_select, &write_command, 1);
displayio_display_bus_end_transaction(&self->bus);
for (uint16_t j = 0; j < subrectangles; j++) {
displayio_area_t subrectangle = {
.x1 = clipped.x1,
.y1 = clipped.y1 + rows_per_buffer * j,
.x2 = clipped.x2,
.y2 = clipped.y1 + rows_per_buffer * (j + 1)
};
if (remaining_rows < rows_per_buffer) {
subrectangle.y2 = subrectangle.y1 + remaining_rows;
}
remaining_rows -= rows_per_buffer;
uint16_t subrectangle_size_bytes = displayio_area_size(&subrectangle) / (8 / self->core.colorspace.depth);
memset(mask, 0, mask_length * sizeof(mask[0]));
memset(buffer, 0, buffer_size * sizeof(buffer[0]));
if (!self->acep) {
self->core.colorspace.grayscale = true;
self->core.colorspace.grayscale_bit = 7;
}
if (pass == 1) {
if (self->grayscale) { // 4-color grayscale
self->core.colorspace.grayscale_bit = 6;
displayio_display_core_fill_area(&self->core, &subrectangle, mask, buffer);
} else if (self->core.colorspace.tricolor) {
self->core.colorspace.grayscale = false;
displayio_display_core_fill_area(&self->core, &subrectangle, mask, buffer);
} else if (self->core.colorspace.sevencolor) {
displayio_display_core_fill_area(&self->core, &subrectangle, mask, buffer);
}
} else {
displayio_display_core_fill_area(&self->core, &subrectangle, mask, buffer);
}
// Invert it all.
if ((pass == 1 && self->color_bits_inverted) ||
(pass == 0 && self->black_bits_inverted)) {
for (uint16_t k = 0; k < buffer_size; k++) {
buffer[k] = ~buffer[k];
}
}
if (!displayio_display_bus_begin_transaction(&self->bus)) {
// Can't acquire display bus; skip the rest of the data. Try next display.
return false;
}
self->bus.send(self->bus.bus, DISPLAY_DATA, self->chip_select, (uint8_t *)buffer, subrectangle_size_bytes);
displayio_display_bus_end_transaction(&self->bus);
// TODO(tannewt): Make refresh displays faster so we don't starve other
// background tasks.
#if CIRCUITPY_USB
usb_background();
#endif
}
}
return true;
}
STATIC bool _clean_area(epaperdisplay_epaperdisplay_obj_t *self) {
uint16_t width = displayio_display_core_get_width(&self->core);
uint16_t height = displayio_display_core_get_height(&self->core);
uint8_t buffer[width / 2];
memset(buffer, 0x77, width / 2);
uint8_t write_command = self->write_black_ram_command;
displayio_display_bus_begin_transaction(&self->bus);
self->bus.send(self->bus.bus, DISPLAY_COMMAND, self->chip_select, &write_command, 1);
displayio_display_bus_end_transaction(&self->bus);
for (uint16_t j = 0; j < height; j++) {
if (!displayio_display_bus_begin_transaction(&self->bus)) {
// Can't acquire display bus; skip the rest of the data. Try next display.
return false;
}
self->bus.send(self->bus.bus, DISPLAY_DATA, self->chip_select, buffer, width / 2);
displayio_display_bus_end_transaction(&self->bus);
// TODO(tannewt): Make refresh displays faster so we don't starve other
// background tasks.
#if CIRCUITPY_USB
usb_background();
#endif
}
return true;
}
bool common_hal_epaperdisplay_epaperdisplay_refresh(epaperdisplay_epaperdisplay_obj_t *self) {
if (self->refreshing && self->busy.base.type == &digitalio_digitalinout_type) {
if (common_hal_digitalio_digitalinout_get_value(&self->busy) != self->busy_state) {
supervisor_disable_tick();
self->refreshing = false;
// Run stop sequence but don't wait for busy because busy is set when sleeping.
send_command_sequence(self, false, self->stop_sequence, self->stop_sequence_len);
} else {
return false;
}
}
if (self->core.current_group == NULL) {
return true;
}
// Refresh at seconds per frame rate.
if (common_hal_epaperdisplay_epaperdisplay_get_time_to_refresh(self) > 0) {
return false;
}
if (!displayio_display_bus_is_free(&self->bus)) {
// Can't acquire display bus; skip updating this display. Try next display.
return false;
}
const displayio_area_t *current_area = epaperdisplay_epaperdisplay_get_refresh_areas(self);
if (current_area == NULL) {
return true;
}
if (self->acep) {
epaperdisplay_epaperdisplay_start_refresh(self);
_clean_area(self);
epaperdisplay_epaperdisplay_finish_refresh(self);
while (self->refreshing && !mp_hal_is_interrupted()) {
RUN_BACKGROUND_TASKS;
}
}
if (mp_hal_is_interrupted()) {
return false;
}
epaperdisplay_epaperdisplay_start_refresh(self);
while (current_area != NULL) {
epaperdisplay_epaperdisplay_refresh_area(self, current_area);
current_area = current_area->next;
}
epaperdisplay_epaperdisplay_finish_refresh(self);
return true;
}
void epaperdisplay_epaperdisplay_background(epaperdisplay_epaperdisplay_obj_t *self) {
if (self->refreshing) {
bool refresh_done = false;
if (self->busy.base.type == &digitalio_digitalinout_type) {
bool busy = common_hal_digitalio_digitalinout_get_value(&self->busy);
refresh_done = busy != self->busy_state;
} else {
refresh_done = supervisor_ticks_ms64() - self->core.last_refresh > self->refresh_time;
}
if (refresh_done) {
supervisor_disable_tick();
self->refreshing = false;
// Run stop sequence but don't wait for busy because busy is set when sleeping.
send_command_sequence(self, false, self->stop_sequence, self->stop_sequence_len);
}
}
}
bool common_hal_epaperdisplay_epaperdisplay_get_busy(epaperdisplay_epaperdisplay_obj_t *self) {
epaperdisplay_epaperdisplay_background(self);
return self->refreshing;
}
void release_epaperdisplay(epaperdisplay_epaperdisplay_obj_t *self) {
if (self->refreshing) {
wait_for_busy(self);
supervisor_disable_tick();
self->refreshing = false;
// Run stop sequence but don't wait for busy because busy is set when sleeping.
send_command_sequence(self, false, self->stop_sequence, self->stop_sequence_len);
}
release_display_core(&self->core);
if (self->busy.base.type == &digitalio_digitalinout_type) {
common_hal_digitalio_digitalinout_deinit(&self->busy);
}
}
void epaperdisplay_epaperdisplay_reset(epaperdisplay_epaperdisplay_obj_t *self) {
displayio_display_core_set_root_group(&self->core, &circuitpython_splash);
self->core.full_refresh = true;
}
void epaperdisplay_epaperdisplay_collect_ptrs(epaperdisplay_epaperdisplay_obj_t *self) {
displayio_display_core_collect_ptrs(&self->core);
displayio_display_bus_collect_ptrs(&self->bus);
gc_collect_ptr((void *)self->start_sequence);
gc_collect_ptr((void *)self->stop_sequence);
}
size_t maybe_refresh_epaperdisplay(void) {
for (uint8_t i = 0; i < CIRCUITPY_DISPLAY_LIMIT; i++) {
if (displays[i].epaper_display.base.type != &epaperdisplay_epaperdisplay_type ||
displays[i].epaper_display.core.current_group != &circuitpython_splash) {
// Skip regular displays and those not showing the splash.
continue;
}
epaperdisplay_epaperdisplay_obj_t *display = &displays[i].epaper_display;
size_t time_to_refresh = common_hal_epaperdisplay_epaperdisplay_get_time_to_refresh(display);
if (time_to_refresh > 0) {
return time_to_refresh;
}
if (common_hal_epaperdisplay_epaperdisplay_refresh(display)) {
return 0;
}
// If we could refresh but it failed, then we want to retry.
return 1;
}
// Return 0 if no ePaper displays are available to pretend it was updated.
return 0;
}