circuitpython/shared-bindings/bitmaptools/__init__.c

1157 lines
52 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Kevin Matocha
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shared-bindings/displayio/Bitmap.h"
#include "shared-bindings/displayio/Palette.h"
#include "shared-bindings/displayio/ColorConverter.h"
#include "shared-bindings/bitmaptools/__init__.h"
#include <stdint.h>
#include "py/binary.h"
#include "py/enum.h"
#include "py/obj.h"
#include "py/runtime.h"
#if MICROPY_VFS
#include "extmod/vfs.h"
#endif
#if defined(MICROPY_VFS_POSIX) && MICROPY_VFS_POSIX
#include "extmod/vfs_posix.h"
#endif
//| """Collection of bitmap manipulation tools
//|
//| .. note:: If you're looking for information about displaying bitmaps on
//| screens in CircuitPython, see `this Learn guide
//| <https://learn.adafruit.com/circuitpython-display-support-using-displayio>`_
//| for information about using the :py:mod:`displayio` module.
//| """
//|
STATIC int16_t validate_point(mp_obj_t point, int16_t default_value) {
// Checks if point is None and returns default_value, otherwise decodes integer value
if (point == mp_const_none) {
return default_value;
}
return mp_obj_get_int(point);
}
STATIC void extract_tuple(mp_obj_t xy_tuple, int16_t *x, int16_t *y, int16_t x_default, int16_t y_default) {
// Helper function for rotozoom
// Extract x,y values from a tuple or default if None
if (xy_tuple == mp_const_none) {
*x = x_default;
*y = y_default;
} else if (!mp_obj_is_obj(xy_tuple)) {
mp_raise_ValueError(MP_ERROR_TEXT("clip point must be (x,y) tuple"));
} else {
mp_obj_t *items;
mp_obj_get_array_fixed_n(xy_tuple, 2, &items);
*x = mp_obj_get_int(items[0]);
*y = mp_obj_get_int(items[1]);
}
}
STATIC void validate_clip_region(displayio_bitmap_t *bitmap, mp_obj_t clip0_tuple, int16_t *clip0_x, int16_t *clip0_y,
mp_obj_t clip1_tuple, int16_t *clip1_x, int16_t *clip1_y) {
// Helper function for rotozoom
// 1. Extract the clip x,y points from the two clip tuples
// 2. Rearrange values such that clip0_ < clip1_
// 3. Constrain the clip points to within the bitmap
extract_tuple(clip0_tuple, clip0_x, clip0_y, 0, 0);
extract_tuple(clip1_tuple, clip1_x, clip1_y, bitmap->width, bitmap->height);
// Ensure the value for clip0 is less than clip1 (for both x and y)
if (*clip0_x > *clip1_x) {
int16_t temp_value = *clip0_x; // swap values
*clip0_x = *clip1_x;
*clip1_x = temp_value;
}
if (*clip0_y > *clip1_y) {
int16_t temp_value = *clip0_y; // swap values
*clip0_y = *clip1_y;
*clip1_y = temp_value;
}
// Constrain the clip window to within the bitmap boundaries
if (*clip0_x < 0) {
*clip0_x = 0;
}
if (*clip0_y < 0) {
*clip0_y = 0;
}
if (*clip0_x > bitmap->width) {
*clip0_x = bitmap->width;
}
if (*clip0_y > bitmap->height) {
*clip0_y = bitmap->height;
}
if (*clip1_x < 0) {
*clip1_x = 0;
}
if (*clip1_y < 0) {
*clip1_y = 0;
}
if (*clip1_x > bitmap->width) {
*clip1_x = bitmap->width;
}
if (*clip1_y > bitmap->height) {
*clip1_y = bitmap->height;
}
}
//| def rotozoom(
//| dest_bitmap: displayio.Bitmap,
//| source_bitmap: displayio.Bitmap,
//| *,
//| ox: int,
//| oy: int,
//| dest_clip0: Tuple[int, int],
//| dest_clip1: Tuple[int, int],
//| px: int,
//| py: int,
//| source_clip0: Tuple[int, int],
//| source_clip1: Tuple[int, int],
//| angle: float,
//| scale: float,
//| skip_index: int
//| ) -> None:
//| """Inserts the source bitmap region into the destination bitmap with rotation
//| (angle), scale and clipping (both on source and destination bitmaps).
//|
//| :param bitmap dest_bitmap: Destination bitmap that will be copied into
//| :param bitmap source_bitmap: Source bitmap that contains the graphical region to be copied
//| :param int ox: Horizontal pixel location in destination bitmap where source bitmap
//| point (px,py) is placed. Defaults to None which causes it to use the horizontal
//| midway point of the destination bitmap.
//| :param int oy: Vertical pixel location in destination bitmap where source bitmap
//| point (px,py) is placed. Defaults to None which causes it to use the vertical
//| midway point of the destination bitmap.
//| :param Tuple[int,int] dest_clip0: First corner of rectangular destination clipping
//| region that constrains region of writing into destination bitmap
//| :param Tuple[int,int] dest_clip1: Second corner of rectangular destination clipping
//| region that constrains region of writing into destination bitmap
//| :param int px: Horizontal pixel location in source bitmap that is placed into the
//| destination bitmap at (ox,oy). Defaults to None which causes it to use the
//| horizontal midway point in the source bitmap.
//| :param int py: Vertical pixel location in source bitmap that is placed into the
//| destination bitmap at (ox,oy). Defaults to None which causes it to use the
//| vertical midway point in the source bitmap.
//| :param Tuple[int,int] source_clip0: First corner of rectangular source clipping
//| region that constrains region of reading from the source bitmap
//| :param Tuple[int,int] source_clip1: Second corner of rectangular source clipping
//| region that constrains region of reading from the source bitmap
//| :param float angle: Angle of rotation, in radians (positive is clockwise direction).
//| Defaults to None which gets treated as 0.0 radians or no rotation.
//| :param float scale: Scaling factor. Defaults to None which gets treated as 1.0 or same
//| as original source size.
//| :param int skip_index: Bitmap palette index in the source that will not be copied,
//| set to None to copy all pixels"""
//| ...
//|
STATIC mp_obj_t bitmaptools_obj_rotozoom(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {ARG_dest_bitmap, ARG_source_bitmap,
ARG_ox, ARG_oy, ARG_dest_clip0, ARG_dest_clip1,
ARG_px, ARG_py, ARG_source_clip0, ARG_source_clip1,
ARG_angle, ARG_scale, ARG_skip_index};
static const mp_arg_t allowed_args[] = {
{MP_QSTR_dest_bitmap, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_source_bitmap, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_ox, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, // None convert to destination->width / 2
{MP_QSTR_oy, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, // None convert to destination->height / 2
{MP_QSTR_dest_clip0, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{MP_QSTR_dest_clip1, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{MP_QSTR_px, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, // None convert to source->width / 2
{MP_QSTR_py, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, // None convert to source->height / 2
{MP_QSTR_source_clip0, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{MP_QSTR_source_clip1, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{MP_QSTR_angle, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, // None convert to 0.0
{MP_QSTR_scale, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, // None convert to 1.0
{MP_QSTR_skip_index, MP_ARG_OBJ | MP_ARG_KW_ONLY, {.u_obj = mp_const_none} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
displayio_bitmap_t *destination = MP_OBJ_TO_PTR(args[ARG_dest_bitmap].u_obj); // the destination bitmap
displayio_bitmap_t *source = MP_OBJ_TO_PTR(args[ARG_source_bitmap].u_obj); // the source bitmap
// ensure that the destination bitmap has at least as many `bits_per_value` as the source
if (destination->bits_per_value < source->bits_per_value) {
mp_raise_ValueError(MP_ERROR_TEXT("source palette too large"));
}
// Confirm the destination location target (ox,oy); if None, default to bitmap midpoint
int16_t ox, oy;
ox = validate_point(args[ARG_ox].u_obj, destination->width / 2);
oy = validate_point(args[ARG_oy].u_obj, destination->height / 2);
// Confirm the source location target (px,py); if None, default to bitmap midpoint
int16_t px, py;
px = validate_point(args[ARG_px].u_obj, source->width / 2);
py = validate_point(args[ARG_py].u_obj, source->height / 2);
// Validate the clipping regions for the destination bitmap
int16_t dest_clip0_x, dest_clip0_y, dest_clip1_x, dest_clip1_y;
validate_clip_region(destination, args[ARG_dest_clip0].u_obj, &dest_clip0_x, &dest_clip0_y,
args[ARG_dest_clip1].u_obj, &dest_clip1_x, &dest_clip1_y);
// Validate the clipping regions for the source bitmap
int16_t source_clip0_x, source_clip0_y, source_clip1_x, source_clip1_y;
validate_clip_region(source, args[ARG_source_clip0].u_obj, &source_clip0_x, &source_clip0_y,
args[ARG_source_clip1].u_obj, &source_clip1_x, &source_clip1_y);
// Confirm the angle value
mp_float_t angle = 0.0;
if (args[ARG_angle].u_obj != mp_const_none) {
angle = mp_obj_get_float(args[ARG_angle].u_obj);
}
// Confirm the scale value
mp_float_t scale = 1.0;
if (args[ARG_scale].u_obj != mp_const_none) {
scale = mp_obj_get_float(args[ARG_scale].u_obj);
}
if (scale < 0) { // ensure scale >= 0
scale = 1.0;
}
uint32_t skip_index;
bool skip_index_none; // Flag whether input skip_value was None
if (args[ARG_skip_index].u_obj == mp_const_none) {
skip_index = 0;
skip_index_none = true;
} else {
skip_index = mp_obj_get_int(args[ARG_skip_index].u_obj);
skip_index_none = false;
}
common_hal_bitmaptools_rotozoom(destination, ox, oy,
dest_clip0_x, dest_clip0_y,
dest_clip1_x, dest_clip1_y,
source, px, py,
source_clip0_x, source_clip0_y,
source_clip1_x, source_clip1_y,
angle,
scale,
skip_index, skip_index_none);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(bitmaptools_rotozoom_obj, 0, bitmaptools_obj_rotozoom);
//| class BlendMode:
//| """The blend mode for `alphablend` to operate use"""
//|
//| Normal: BlendMode
//| """Blend with equal parts of the two source bitmaps"""
//|
//| Screen: BlendMode
//| """Blend based on the value in each color channel. The result keeps the lighter colors and discards darker colors."""
//|
MAKE_ENUM_VALUE(bitmaptools_blendmode_type, bitmaptools_blendmode, Normal, BITMAPTOOLS_BLENDMODE_NORMAL);
MAKE_ENUM_VALUE(bitmaptools_blendmode_type, bitmaptools_blendmode, Screen, BITMAPTOOLS_BLENDMODE_SCREEN);
MAKE_ENUM_MAP(bitmaptools_blendmode) {
MAKE_ENUM_MAP_ENTRY(bitmaptools_blendmode, Normal),
MAKE_ENUM_MAP_ENTRY(bitmaptools_blendmode, Screen),
};
STATIC MP_DEFINE_CONST_DICT(bitmaptools_blendmode_locals_dict, bitmaptools_blendmode_locals_table);
MAKE_PRINTER(bitmaptools, bitmaptools_blendmode);
MAKE_ENUM_TYPE(bitmaptools, BlendMode, bitmaptools_blendmode);
// requires at least 2 arguments (destination bitmap and source bitmap)
//| def alphablend(
//| dest_bitmap: displayio.Bitmap,
//| source_bitmap_1: displayio.Bitmap,
//| source_bitmap_2: displayio.Bitmap,
//| colorspace: displayio.Colorspace,
//| factor1: float = 0.5,
//| factor2: Optional[float] = None,
//| blendmode: Optional[BlendMode] = BlendMode.Normal,
//| skip_source1_index: Union[int, None] = None,
//| skip_source2_index: Union[int, None] = None,
//| ) -> None:
//| """Alpha blend the two source bitmaps into the destination.
//|
//| It is permitted for the destination bitmap to be one of the two
//| source bitmaps.
//|
//| :param bitmap dest_bitmap: Destination bitmap that will be written into
//| :param bitmap source_bitmap_1: The first source bitmap
//| :param bitmap source_bitmap_2: The second source bitmap
//| :param float factor1: The proportion of bitmap 1 to mix in
//| :param float factor2: The proportion of bitmap 2 to mix in. If specified as `None`, ``1-factor1`` is used. Usually the proportions should sum to 1.
//| :param displayio.Colorspace colorspace: The colorspace of the bitmaps. They must all have the same colorspace. Only the following colorspaces are permitted: ``L8``, ``RGB565``, ``RGB565_SWAPPED``, ``BGR565`` and ``BGR565_SWAPPED``.
//| :param bitmaptools.BlendMode blendmode: The blend mode to use. Default is Normal.
//| :param int skip_source1_index: Bitmap palette or luminance index in source_bitmap_1 that will not be blended, set to None to blend all pixels
//| :param int skip_source2_index: Bitmap palette or luminance index in source_bitmap_2 that will not be blended, set to None to blend all pixels
//|
//| For the L8 colorspace, the bitmaps must have a bits-per-value of 8.
//| For the RGB colorspaces, they must have a bits-per-value of 16."""
//|
STATIC mp_obj_t bitmaptools_alphablend(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {ARG_dest_bitmap, ARG_source_bitmap_1, ARG_source_bitmap_2, ARG_colorspace, ARG_factor_1, ARG_factor_2, ARG_blendmode, ARG_skip_source1_index, ARG_skip_source2_index};
static const mp_arg_t allowed_args[] = {
{MP_QSTR_dest_bitmap, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = NULL}},
{MP_QSTR_source_bitmap_1, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = NULL}},
{MP_QSTR_source_bitmap_2, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = NULL}},
{MP_QSTR_colorspace, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = NULL}},
{MP_QSTR_factor_1, MP_ARG_OBJ, {.u_obj = MP_ROM_NONE}},
{MP_QSTR_factor_2, MP_ARG_OBJ, {.u_obj = MP_ROM_NONE}},
{MP_QSTR_blendmode, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = (void *)&bitmaptools_blendmode_Normal_obj}},
{MP_QSTR_skip_source1_index, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{MP_QSTR_skip_source2_index, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
displayio_bitmap_t *destination = MP_OBJ_TO_PTR(mp_arg_validate_type(args[ARG_dest_bitmap].u_obj, &displayio_bitmap_type, MP_QSTR_dest_bitmap)); // the destination bitmap
displayio_bitmap_t *source1 = MP_OBJ_TO_PTR(mp_arg_validate_type(args[ARG_source_bitmap_1].u_obj, &displayio_bitmap_type, MP_QSTR_source_bitmap_1)); // the first source bitmap
displayio_bitmap_t *source2 = MP_OBJ_TO_PTR(mp_arg_validate_type(args[ARG_source_bitmap_2].u_obj, &displayio_bitmap_type, MP_QSTR_source_bitmap_2)); // the second source bitmap
mp_float_t factor1 = (args[ARG_factor_1].u_obj == mp_const_none) ? MICROPY_FLOAT_CONST(.5) : mp_obj_get_float(args[ARG_factor_1].u_obj);
mp_float_t factor2 = (args[ARG_factor_2].u_obj == mp_const_none) ? 1 - factor1 : mp_obj_get_float(args[ARG_factor_2].u_obj);
displayio_colorspace_t colorspace = (displayio_colorspace_t)cp_enum_value(&displayio_colorspace_type, args[ARG_colorspace].u_obj, MP_QSTR_colorspace);
bitmaptools_blendmode_t blendmode = (bitmaptools_blendmode_t)cp_enum_value(&bitmaptools_blendmode_type, args[ARG_blendmode].u_obj, MP_QSTR_blendmode);
if (destination->width != source1->width
|| destination->height != source1->height
|| destination->bits_per_value != source1->bits_per_value
|| destination->width != source2->width
|| destination->height != source2->height
|| destination->bits_per_value != source2->bits_per_value
) {
mp_raise_ValueError(MP_ERROR_TEXT("Bitmap size and bits per value must match"));
}
switch (colorspace) {
case DISPLAYIO_COLORSPACE_L8:
if (destination->bits_per_value != 8) {
mp_raise_ValueError(MP_ERROR_TEXT("For L8 colorspace, input bitmap must have 8 bits per pixel"));
}
break;
case DISPLAYIO_COLORSPACE_RGB565:
case DISPLAYIO_COLORSPACE_RGB565_SWAPPED:
case DISPLAYIO_COLORSPACE_BGR565:
case DISPLAYIO_COLORSPACE_BGR565_SWAPPED:
if (destination->bits_per_value != 16) {
mp_raise_ValueError(MP_ERROR_TEXT("For RGB colorspaces, input bitmap must have 16 bits per pixel"));
}
break;
default:
mp_raise_ValueError(MP_ERROR_TEXT("Unsupported colorspace"));
}
uint32_t skip_source1_index;
bool skip_source1_index_none; // flag whether skip_value was None
if (args[ARG_skip_source1_index].u_obj == mp_const_none) {
skip_source1_index = 0;
skip_source1_index_none = true;
} else {
skip_source1_index = mp_obj_get_int(args[ARG_skip_source1_index].u_obj);
skip_source1_index_none = false;
}
uint32_t skip_source2_index;
bool skip_source2_index_none; // flag whether skip_self_value was None
if (args[ARG_skip_source2_index].u_obj == mp_const_none) {
skip_source2_index = 0;
skip_source2_index_none = true;
} else {
skip_source2_index = mp_obj_get_int(args[ARG_skip_source2_index].u_obj);
skip_source2_index_none = false;
}
common_hal_bitmaptools_alphablend(destination, source1, source2, colorspace, factor1, factor2, blendmode, skip_source1_index,
skip_source1_index_none, skip_source2_index, skip_source2_index_none);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(bitmaptools_alphablend_obj, 0, bitmaptools_alphablend);
//| def fill_region(
//| dest_bitmap: displayio.Bitmap, x1: int, y1: int, x2: int, y2: int, value: int
//| ) -> None:
//| """Draws the color value into the destination bitmap within the
//| rectangular region bounded by (x1,y1) and (x2,y2), exclusive.
//|
//| :param bitmap dest_bitmap: Destination bitmap that will be written into
//| :param int x1: x-pixel position of the first corner of the rectangular fill region
//| :param int y1: y-pixel position of the first corner of the rectangular fill region
//| :param int x2: x-pixel position of the second corner of the rectangular fill region (exclusive)
//| :param int y2: y-pixel position of the second corner of the rectangular fill region (exclusive)
//| :param int value: Bitmap palette index that will be written into the rectangular
//| fill region in the destination bitmap"""
//| ...
//|
STATIC mp_obj_t bitmaptools_obj_fill_region(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {ARG_dest_bitmap, ARG_x1, ARG_y1, ARG_x2, ARG_y2, ARG_value};
static const mp_arg_t allowed_args[] = {
{MP_QSTR_dest_bitmap, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_x1, MP_ARG_REQUIRED | MP_ARG_INT, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_y1, MP_ARG_REQUIRED | MP_ARG_INT, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_x2, MP_ARG_REQUIRED | MP_ARG_INT, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_y2, MP_ARG_REQUIRED | MP_ARG_INT, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_value, MP_ARG_REQUIRED | MP_ARG_INT, {.u_obj = MP_OBJ_NULL}},
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
displayio_bitmap_t *destination = MP_OBJ_TO_PTR(args[ARG_dest_bitmap].u_obj); // the destination bitmap
uint32_t value, color_depth;
value = args[ARG_value].u_int;
color_depth = (1 << destination->bits_per_value);
if (color_depth <= value) {
mp_raise_ValueError(MP_ERROR_TEXT("out of range of target"));
}
int16_t x1 = args[ARG_x1].u_int;
int16_t y1 = args[ARG_y1].u_int;
int16_t x2 = args[ARG_x2].u_int;
int16_t y2 = args[ARG_y2].u_int;
common_hal_bitmaptools_fill_region(destination, x1, y1, x2, y2, value);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(bitmaptools_fill_region_obj, 0, bitmaptools_obj_fill_region);
//| def boundary_fill(
//| dest_bitmap: displayio.Bitmap,
//| x: int,
//| y: int,
//| fill_color_value: int,
//| replaced_color_value: int,
//| ) -> None:
//| """Draws the color value into the destination bitmap enclosed
//| area of pixels of the background_value color. Like "Paint Bucket"
//| fill tool.
//|
//| :param bitmap dest_bitmap: Destination bitmap that will be written into
//| :param int x: x-pixel position of the first pixel to check and fill if needed
//| :param int y: y-pixel position of the first pixel to check and fill if needed
//| :param int fill_color_value: Bitmap palette index that will be written into the
//| enclosed area in the destination bitmap
//| :param int replaced_color_value: Bitmap palette index that will filled with the
//| value color in the enclosed area in the destination bitmap"""
//| ...
//|
STATIC mp_obj_t bitmaptools_obj_boundary_fill(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {ARG_dest_bitmap, ARG_x, ARG_y, ARG_fill_color_value, ARG_replaced_color_value};
static const mp_arg_t allowed_args[] = {
{MP_QSTR_dest_bitmap, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_x, MP_ARG_REQUIRED | MP_ARG_INT, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_y, MP_ARG_REQUIRED | MP_ARG_INT, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_fill_color_value, MP_ARG_REQUIRED | MP_ARG_INT, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_replaced_color_value, MP_ARG_INT, {.u_int = INT_MAX} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
displayio_bitmap_t *destination = MP_OBJ_TO_PTR(mp_arg_validate_type(args[ARG_dest_bitmap].u_obj, &displayio_bitmap_type, MP_QSTR_dest_bitmap)); // the destination bitmap
uint32_t fill_color_value, color_depth;
fill_color_value = args[ARG_fill_color_value].u_int;
color_depth = (1 << destination->bits_per_value);
if (color_depth <= fill_color_value) {
mp_raise_ValueError(MP_ERROR_TEXT("value out of range of target"));
}
uint32_t replaced_color_value;
replaced_color_value = args[ARG_replaced_color_value].u_int;
if (replaced_color_value != INT_MAX && color_depth <= replaced_color_value) {
mp_raise_ValueError(MP_ERROR_TEXT("background value out of range of target"));
}
int16_t x = args[ARG_x].u_int;
int16_t y = args[ARG_y].u_int;
if (x < 0 || x >= destination->width) {
mp_raise_ValueError(MP_ERROR_TEXT("out of range of target"));
}
if (y < 0 || y >= destination->height) {
mp_raise_ValueError(MP_ERROR_TEXT("out of range of target"));
}
common_hal_bitmaptools_boundary_fill(destination, x, y, fill_color_value, replaced_color_value);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(bitmaptools_boundary_fill_obj, 0, bitmaptools_obj_boundary_fill);
// requires all 6 arguments
//| def draw_line(
//| dest_bitmap: displayio.Bitmap, x1: int, y1: int, x2: int, y2: int, value: int
//| ) -> None:
//| """Draws a line into a bitmap specified two endpoints (x1,y1) and (x2,y2).
//|
//| :param bitmap dest_bitmap: Destination bitmap that will be written into
//| :param int x1: x-pixel position of the line's first endpoint
//| :param int y1: y-pixel position of the line's first endpoint
//| :param int x2: x-pixel position of the line's second endpoint
//| :param int y2: y-pixel position of the line's second endpoint
//| :param int value: Bitmap palette index that will be written into the
//| line in the destination bitmap"""
//| ...
//|
STATIC mp_obj_t bitmaptools_obj_draw_line(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {ARG_dest_bitmap, ARG_x1, ARG_y1, ARG_x2, ARG_y2, ARG_value};
static const mp_arg_t allowed_args[] = {
{MP_QSTR_dest_bitmap, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_x1, MP_ARG_REQUIRED | MP_ARG_INT, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_y1, MP_ARG_REQUIRED | MP_ARG_INT, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_x2, MP_ARG_REQUIRED | MP_ARG_INT, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_y2, MP_ARG_REQUIRED | MP_ARG_INT, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_value, MP_ARG_REQUIRED | MP_ARG_INT, {.u_obj = MP_OBJ_NULL}},
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
displayio_bitmap_t *destination = MP_OBJ_TO_PTR(args[ARG_dest_bitmap].u_obj); // the destination bitmap
uint32_t value, color_depth;
value = args[ARG_value].u_int;
color_depth = (1 << destination->bits_per_value);
if (color_depth <= value) {
mp_raise_ValueError(MP_ERROR_TEXT("out of range of target"));
}
int16_t x1 = args[ARG_x1].u_int;
int16_t y1 = args[ARG_y1].u_int;
int16_t x2 = args[ARG_x2].u_int;
int16_t y2 = args[ARG_y2].u_int;
common_hal_bitmaptools_draw_line(destination, x1, y1, x2, y2, value);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(bitmaptools_draw_line_obj, 0, bitmaptools_obj_draw_line);
// requires all 6 arguments
//| def draw_polygon(
//| dest_bitmap: displayio.Bitmap,
//| xs: ReadableBuffer,
//| ys: ReadableBuffer,
//| value: int,
//| close: Optional[bool] = True,
//| ) -> None:
//| """Draw a polygon connecting points on provided bitmap with provided value
//|
//| :param bitmap dest_bitmap: Destination bitmap that will be written into
//| :param ReadableBuffer xs: x-pixel position of the polygon's vertices
//| :param ReadableBuffer ys: y-pixel position of the polygon's vertices
//| :param int value: Bitmap palette index that will be written into the
//| line in the destination bitmap
//| :param bool close: (Optional) Whether to connect first and last point. (True)
//|
//| .. code-block:: Python
//|
//| import board
//| import displayio
//| import bitmaptools
//|
//| display = board.DISPLAY
//| main_group = displayio.Group()
//| display.root_group = main_group
//|
//| palette = displayio.Palette(3)
//| palette[0] = 0xffffff
//| palette[1] = 0x0000ff
//| palette[2] = 0xff0000
//|
//| bmp = displayio.Bitmap(128,128, 3)
//| bmp.fill(0)
//|
//| xs = bytes([4, 101, 101, 19])
//| ys = bytes([4, 19, 121, 101])
//| bitmaptools.draw_polygon(bmp, xs, ys, 1)
//|
//| xs = bytes([14, 60, 110])
//| ys = bytes([14, 24, 90])
//| bitmaptools.draw_polygon(bmp, xs, ys, 2)
//|
//| tilegrid = displayio.TileGrid(bitmap=bmp, pixel_shader=palette)
//| main_group.append(tilegrid)
//|
//| while True:
//| pass
//| """
//| ...
//|
STATIC mp_obj_t bitmaptools_obj_draw_polygon(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {ARG_dest_bitmap, ARG_xs, ARG_ys, ARG_value, ARG_close};
static const mp_arg_t allowed_args[] = {
{MP_QSTR_dest_bitmap, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_xs, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_ys, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_value, MP_ARG_REQUIRED | MP_ARG_INT, {.u_obj = MP_OBJ_NULL}},
{MP_QSTR_close, MP_ARG_BOOL, {.u_bool = true}},
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
displayio_bitmap_t *destination = MP_OBJ_TO_PTR(args[ARG_dest_bitmap].u_obj); // the destination bitmap
mp_buffer_info_t xs_buf, ys_buf;
mp_get_buffer_raise(args[ARG_xs].u_obj, &xs_buf, MP_BUFFER_READ);
mp_get_buffer_raise(args[ARG_ys].u_obj, &ys_buf, MP_BUFFER_READ);
size_t xs_size = mp_binary_get_size('@', xs_buf.typecode, NULL);
size_t ys_size = mp_binary_get_size('@', ys_buf.typecode, NULL);
size_t xs_len = xs_buf.len / xs_size;
size_t ys_len = ys_buf.len / ys_size;
if (xs_size != ys_size) {
mp_raise_ValueError(MP_ERROR_TEXT("Coordinate arrays types have different sizes"));
}
if (xs_len != ys_len) {
mp_raise_ValueError(MP_ERROR_TEXT("Coordinate arrays have different lengths"));
}
uint32_t value, color_depth;
value = args[ARG_value].u_int;
color_depth = (1 << destination->bits_per_value);
if (color_depth <= value) {
mp_raise_ValueError(MP_ERROR_TEXT("out of range of target"));
}
bool close = args[ARG_close].u_bool;
common_hal_bitmaptools_draw_polygon(destination, xs_buf.buf, ys_buf.buf, xs_len, xs_size, value, close);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(bitmaptools_draw_polygon_obj, 0, bitmaptools_obj_draw_polygon);
//| def arrayblit(
//| bitmap: displayio.Bitmap,
//| data: ReadableBuffer,
//| x1: int = 0,
//| y1: int = 0,
//| x2: Optional[int] = None,
//| y2: Optional[int] = None,
//| skip_index: Optional[int] = None,
//| ) -> None:
//| """Inserts pixels from ``data`` into the rectangle of width×height pixels with the upper left corner at ``(x,y)``
//|
//| The values from ``data`` are taken modulo the number of color values
//| available in the destination bitmap.
//|
//| If x1 or y1 are not specified, they are taken as 0. If x2 or y2
//| are not specified, or are given as -1, they are taken as the width
//| and height of the image.
//|
//| The coordinates affected by the blit are ``x1 <= x < x2`` and ``y1 <= y < y2``.
//|
//| ``data`` must contain at least as many elements as required. If it
//| contains excess elements, they are ignored.
//|
//| The blit takes place by rows, so the first elements of ``data`` go
//| to the first row, the next elements to the next row, and so on.
//|
//| :param displayio.Bitmap bitmap: A writable bitmap
//| :param ReadableBuffer data: Buffer containing the source pixel values
//| :param int x1: The left corner of the area to blit into (inclusive)
//| :param int y1: The top corner of the area to blit into (inclusive)
//| :param int x2: The right of the area to blit into (exclusive)
//| :param int y2: The bottom corner of the area to blit into (exclusive)
//| :param int skip_index: Bitmap palette index in the source that will not be copied,
//| set to None to copy all pixels
//| """
//| ...
//|
STATIC mp_obj_t bitmaptools_arrayblit(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_bitmap, ARG_data, ARG_x1, ARG_y1, ARG_x2, ARG_y2, ARG_skip_index };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_bitmap, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_x1, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_y1, MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_x2, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_y2, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_skip_index, MP_ARG_OBJ, {.u_obj = mp_const_none } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
displayio_bitmap_t *bitmap = mp_arg_validate_type(args[ARG_bitmap].u_obj, &displayio_bitmap_type, MP_QSTR_bitmap);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[ARG_data].u_obj, &bufinfo, MP_BUFFER_READ);
int x1 = args[ARG_x1].u_int;
int y1 = args[ARG_y1].u_int;
int x2 = args[ARG_x2].u_int == -1 ? bitmap->width : args[ARG_x2].u_int;
int y2 = args[ARG_y2].u_int == -1 ? bitmap->height : args[ARG_y2].u_int;
if ((x1 < 0) || (y1 < 0) || (x1 > x2) || (y1 > y2) || (x2 > bitmap->width) || (y2 > bitmap->height)) {
mp_raise_IndexError(MP_ERROR_TEXT("pixel coordinates out of bounds"));
}
size_t output_element_count = (x2 - x1) * (y2 - y1);
size_t element_size = mp_binary_get_size('@', bufinfo.typecode, NULL);
size_t input_element_count = bufinfo.len / element_size;
bool skip_specified = args[ARG_skip_index].u_obj != mp_const_none;
uint32_t skip_index = skip_specified ? mp_obj_get_int(args[ARG_skip_index].u_obj) : 0;
if (input_element_count < output_element_count) {
mp_raise_IndexError(MP_ERROR_TEXT("index out of range"));
}
common_hal_bitmaptools_arrayblit(bitmap, bufinfo.buf, element_size, x1, y1, x2, y2, skip_specified, skip_index);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(bitmaptools_arrayblit_obj, 0, bitmaptools_arrayblit);
//| def readinto(
//| bitmap: displayio.Bitmap,
//| file: typing.BinaryIO,
//| bits_per_pixel: int,
//| element_size: int = 1,
//| reverse_pixels_in_element: bool = False,
//| swap_bytes_in_element: bool = False,
//| reverse_rows: bool = False,
//| ) -> None:
//| """Reads from a binary file into a bitmap.
//|
//| The file must be positioned so that it consists of ``bitmap.height`` rows of pixel data, where each row is the smallest multiple of ``element_size`` bytes that can hold ``bitmap.width`` pixels.
//|
//| The bytes in an element can be optionally swapped, and the pixels in an element can be reversed. Also, the
//| row loading direction can be reversed, which may be requires for loading certain bitmap files.
//|
//| This function doesn't parse image headers, but is useful to speed up loading of uncompressed image formats such as PCF glyph data.
//|
//| :param displayio.Bitmap bitmap: A writable bitmap
//| :param typing.BinaryIO file: A file opened in binary mode
//| :param int bits_per_pixel: Number of bits per pixel. Values 1, 2, 4, 8, 16, 24, and 32 are supported;
//| :param int element_size: Number of bytes per element. Values of 1, 2, and 4 are supported, except that 24 ``bits_per_pixel`` requires 1 byte per element.
//| :param bool reverse_pixels_in_element: If set, the first pixel in a word is taken from the Most Significant Bits; otherwise, it is taken from the Least Significant Bits.
//| :param bool swap_bytes_in_element: If the ``element_size`` is not 1, then reverse the byte order of each element read.
//| :param bool reverse_rows: Reverse the direction of the row loading (required for some bitmap images).
//| """
//| ...
//|
STATIC mp_obj_t bitmaptools_readinto(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_bitmap, ARG_file, ARG_bits_per_pixel, ARG_element_size, ARG_reverse_pixels_in_element, ARG_swap_bytes_in_element, ARG_reverse_rows };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_bitmap, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_file, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_bits_per_pixel, MP_ARG_REQUIRED | MP_ARG_INT, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_element_size, MP_ARG_INT, { .u_int = 1 } },
{ MP_QSTR_reverse_pixels_in_element, MP_ARG_BOOL, { .u_bool = false } },
{ MP_QSTR_swap_bytes_in_element, MP_ARG_BOOL, { .u_bool = false } },
{ MP_QSTR_reverse_rows, MP_ARG_BOOL, { .u_bool = false } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
displayio_bitmap_t *bitmap = mp_arg_validate_type(args[ARG_bitmap].u_obj, &displayio_bitmap_type, MP_QSTR_bitmap);
mp_obj_t *file = args[ARG_file].u_obj;
int element_size = args[ARG_element_size].u_int;
if (element_size != 1 && element_size != 2 && element_size != 4) {
mp_raise_ValueError_varg(MP_ERROR_TEXT("invalid element_size %d, must be, 1, 2, or 4"), element_size);
}
int bits_per_pixel = args[ARG_bits_per_pixel].u_int;
switch (bits_per_pixel) {
case 24:
if (element_size != 1) {
mp_raise_ValueError_varg(MP_ERROR_TEXT("invalid element size %d for bits_per_pixel %d\n"), element_size, bits_per_pixel);
}
break;
case 1:
case 2:
case 4:
case 8:
case 16:
case 32:
break;
default:
mp_raise_ValueError_varg(MP_ERROR_TEXT("invalid bits_per_pixel %d, must be, 1, 2, 4, 8, 16, 24, or 32"), bits_per_pixel);
}
bool reverse_pixels_in_element = args[ARG_reverse_pixels_in_element].u_bool;
bool swap_bytes_in_element = args[ARG_swap_bytes_in_element].u_bool;
bool reverse_rows = args[ARG_reverse_rows].u_bool;
common_hal_bitmaptools_readinto(bitmap, file, element_size, bits_per_pixel, reverse_pixels_in_element, swap_bytes_in_element, reverse_rows);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(bitmaptools_readinto_obj, 0, bitmaptools_readinto);
//| class DitherAlgorithm:
//| """Identifies the algorithm for dither to use"""
//|
//| Atkinson: "DitherAlgorithm"
//| """The classic Atkinson dither, often associated with the Hypercard esthetic"""
//|
//| FloydStenberg: "DitherAlgorithm"
//| """The Floyd-Stenberg dither"""
//|
MAKE_ENUM_VALUE(bitmaptools_dither_algorithm_type, dither_algorithm, Atkinson, DITHER_ALGORITHM_ATKINSON);
MAKE_ENUM_VALUE(bitmaptools_dither_algorithm_type, dither_algorithm, FloydStenberg, DITHER_ALGORITHM_FLOYD_STENBERG);
MAKE_ENUM_MAP(bitmaptools_dither_algorithm) {
MAKE_ENUM_MAP_ENTRY(dither_algorithm, Atkinson),
MAKE_ENUM_MAP_ENTRY(dither_algorithm, FloydStenberg),
};
STATIC MP_DEFINE_CONST_DICT(bitmaptools_dither_algorithm_locals_dict, bitmaptools_dither_algorithm_locals_table);
MAKE_PRINTER(bitmaptools, bitmaptools_dither_algorithm);
MAKE_ENUM_TYPE(bitmaptools, DitherAlgorithm, bitmaptools_dither_algorithm);
//| def dither(
//| dest_bitmap: displayio.Bitmap,
//| source_bitmapp: displayio.Bitmap,
//| source_colorspace: displayio.Colorspace,
//| algorithm: DitherAlgorithm = DitherAlgorithm.Atkinson,
//| ) -> None:
//| """Convert the input image into a 2-level output image using the given dither algorithm.
//|
//| :param bitmap dest_bitmap: Destination bitmap. It must have a value_count of 2 or 65536. The stored values are 0 and the maximum pixel value.
//| :param bitmap source_bitmap: Source bitmap that contains the graphical region to be dithered. It must have a value_count of 65536.
//| :param colorspace: The colorspace of the image. The supported colorspaces are ``RGB565``, ``BGR565``, ``RGB565_SWAPPED``, and ``BGR565_SWAPPED``
//| :param algorithm: The dither algorithm to use, one of the `DitherAlgorithm` values.
//| """
//| ...
//|
STATIC mp_obj_t bitmaptools_dither(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_dest_bitmap, ARG_source_bitmap, ARG_source_colorspace, ARG_algorithm };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_dest_bitmap, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_source_bitmap, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_source_colorspace, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_algorithm, MP_ARG_OBJ, { .u_obj = MP_ROM_PTR((void *)&dither_algorithm_Atkinson_obj) } },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
displayio_bitmap_t *source_bitmap = mp_arg_validate_type(args[ARG_source_bitmap].u_obj, &displayio_bitmap_type, MP_QSTR_source_bitmap);
displayio_bitmap_t *dest_bitmap = mp_arg_validate_type(args[ARG_dest_bitmap].u_obj, &displayio_bitmap_type, MP_QSTR_dest_bitmap);
bitmaptools_dither_algorithm_t algorithm = cp_enum_value(&bitmaptools_dither_algorithm_type, args[ARG_algorithm].u_obj, MP_QSTR_algorithm);
displayio_colorspace_t colorspace = cp_enum_value(&displayio_colorspace_type, args[ARG_source_colorspace].u_obj, MP_QSTR_source_colorspace);
if (source_bitmap->width != dest_bitmap->width || source_bitmap->height != dest_bitmap->height) {
mp_raise_TypeError(MP_ERROR_TEXT("bitmap sizes must match"));
}
if (dest_bitmap->bits_per_value != 16 && dest_bitmap->bits_per_value != 1) {
mp_raise_TypeError(MP_ERROR_TEXT("source_bitmap must have value_count of 2 or 65536"));
}
switch (colorspace) {
case DISPLAYIO_COLORSPACE_RGB565:
case DISPLAYIO_COLORSPACE_RGB565_SWAPPED:
case DISPLAYIO_COLORSPACE_BGR565:
case DISPLAYIO_COLORSPACE_BGR565_SWAPPED:
if (source_bitmap->bits_per_value != 16) {
mp_raise_TypeError(MP_ERROR_TEXT("source_bitmap must have value_count of 65536"));
}
break;
case DISPLAYIO_COLORSPACE_L8:
if (source_bitmap->bits_per_value != 8) {
mp_raise_TypeError(MP_ERROR_TEXT("source_bitmap must have value_count of 8"));
}
break;
default:
mp_raise_TypeError(MP_ERROR_TEXT("unsupported colorspace for dither"));
}
common_hal_bitmaptools_dither(dest_bitmap, source_bitmap, colorspace, algorithm);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(bitmaptools_dither_obj, 0, bitmaptools_dither);
// requires all 5 arguments
//| def draw_circle(
//| dest_bitmap: displayio.Bitmap, x: int, y: int, radius: int, value: int
//| ) -> None:
//| """Draws a circle into a bitmap specified using a center (x0,y0) and radius r.
//|
//| :param bitmap dest_bitmap: Destination bitmap that will be written into
//| :param int x: x-pixel position of the circle's center
//| :param int y: y-pixel position of the circle's center
//| :param int radius: circle's radius
//| :param int value: Bitmap palette index that will be written into the
//| circle in the destination bitmap
//|
//| .. code-block:: Python
//|
//| import board
//| import displayio
//| import bitmaptools
//|
//| display = board.DISPLAY
//| main_group = displayio.Group()
//| display.root_group = main_group
//|
//| palette = displayio.Palette(2)
//| palette[0] = 0xffffff
//| palette[1] = 0x440044
//|
//| bmp = displayio.Bitmap(128,128, 2)
//| bmp.fill(0)
//|
//| bitmaptools.circle(64,64, 32, 1)
//|
//| tilegrid = displayio.TileGrid(bitmap=bmp, pixel_shader=palette)
//| main_group.append(tilegrid)
//|
//| while True:
//| pass
//|
//| """
//|
//| ...
//|
STATIC mp_obj_t bitmaptools_obj_draw_circle(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {ARG_dest_bitmap, ARG_x, ARG_y, ARG_radius, ARG_value};
static const mp_arg_t allowed_args[] = {
{MP_QSTR_dest_bitmap, MP_ARG_REQUIRED | MP_ARG_OBJ, {}},
{MP_QSTR_x, MP_ARG_REQUIRED | MP_ARG_INT, {}},
{MP_QSTR_y, MP_ARG_REQUIRED | MP_ARG_INT, {}},
{MP_QSTR_radius, MP_ARG_REQUIRED | MP_ARG_INT, {}},
{MP_QSTR_value, MP_ARG_REQUIRED | MP_ARG_INT, {}},
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
displayio_bitmap_t *destination = MP_OBJ_TO_PTR(args[ARG_dest_bitmap].u_obj); // the destination bitmap
uint32_t value, color_depth;
value = args[ARG_value].u_int;
color_depth = (1 << destination->bits_per_value);
if (color_depth <= value) {
mp_raise_ValueError(MP_ERROR_TEXT("out of range of target"));
}
int16_t x = args[ARG_x].u_int;
int16_t y = args[ARG_y].u_int;
int16_t radius = args[ARG_radius].u_int;
mp_arg_validate_int_range(x, 0, destination->width, MP_QSTR_x);
mp_arg_validate_int_range(y, 0, destination->height, MP_QSTR_y);
mp_arg_validate_int_min(radius, 0, MP_QSTR_radius);
common_hal_bitmaptools_draw_circle(destination, x, y, radius, value);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(bitmaptools_draw_circle_obj, 0, bitmaptools_obj_draw_circle);
//| def blit(
//| dest_bitmap: displayio.Bitmap,
//| source_bitmap: displayio.Bitmap,
//| x: int,
//| y: int,
//| *,
//| x1: int,
//| y1: int,
//| x2: int,
//| y2: int,
//| skip_source_index: int,
//| skip_dest_index: int
//| ) -> None:
//| """Inserts the source_bitmap region defined by rectangular boundaries
//| (x1,y1) and (x2,y2) into the bitmap at the specified (x,y) location.
//|
//| :param bitmap dest_bitmap: Destination bitmap that the area will be copied into.
//| :param bitmap source_bitmap: Source bitmap that contains the graphical region to be copied
//| :param int x: Horizontal pixel location in bitmap where source_bitmap upper-left
//| corner will be placed
//| :param int y: Vertical pixel location in bitmap where source_bitmap upper-left
//| corner will be placed
//| :param int x1: Minimum x-value for rectangular bounding box to be copied from the source bitmap
//| :param int y1: Minimum y-value for rectangular bounding box to be copied from the source bitmap
//| :param int x2: Maximum x-value (exclusive) for rectangular bounding box to be copied from the source bitmap
//| :param int y2: Maximum y-value (exclusive) for rectangular bounding box to be copied from the source bitmap
//| :param int skip_source_index: bitmap palette index in the source that will not be copied,
//| set to None to copy all pixels
//| :param int skip_dest_index: bitmap palette index in the destination bitmap that will not get overwritten
//| by the pixels from the source"""
//| ...
//|
STATIC mp_obj_t bitmaptools_obj_blit(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {ARG_destination, ARG_source, ARG_x, ARG_y, ARG_x1, ARG_y1, ARG_x2, ARG_y2, ARG_skip_source_index, ARG_skip_dest_index};
static const mp_arg_t allowed_args[] = {
{MP_QSTR_dest_bitmap, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{MP_QSTR_source_bitmap, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{MP_QSTR_x, MP_ARG_REQUIRED | MP_ARG_INT, {.u_obj = MP_OBJ_NULL} },
{MP_QSTR_y, MP_ARG_REQUIRED | MP_ARG_INT, {.u_obj = MP_OBJ_NULL} },
{MP_QSTR_x1, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{MP_QSTR_y1, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{MP_QSTR_x2, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, // None convert to source->width
{MP_QSTR_y2, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, // None convert to source->height
{MP_QSTR_skip_source_index, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{MP_QSTR_skip_dest_index, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
// mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// displayio_bitmap_t *self = MP_OBJ_TO_PTR(pos_args[0]);
displayio_bitmap_t *destination = mp_arg_validate_type(args[ARG_destination].u_obj, &displayio_bitmap_type, MP_QSTR_dest_bitmap);
// check_for_deinit(destination);
// Check x,y are within self (target) bitmap boundary
int16_t x = mp_arg_validate_int_range(args[ARG_x].u_int, 0, MAX(0, destination->width - 1), MP_QSTR_x);
int16_t y = mp_arg_validate_int_range(args[ARG_y].u_int, 0, MAX(0, destination->height - 1), MP_QSTR_y);
displayio_bitmap_t *source = mp_arg_validate_type(args[ARG_source].u_obj, &displayio_bitmap_type, MP_QSTR_source_bitmap);
// ensure that the target bitmap (self) has at least as many `bits_per_value` as the source
if (destination->bits_per_value < source->bits_per_value) {
mp_raise_ValueError(MP_ERROR_TEXT("source palette too large"));
}
// Check x1,y1,x2,y2 are within source bitmap boundary
int16_t x1 = mp_arg_validate_int_range(args[ARG_x1].u_int, 0, MAX(0, source->width - 1), MP_QSTR_x1);
int16_t y1 = mp_arg_validate_int_range(args[ARG_y1].u_int, 0, MAX(0, source->height - 1), MP_QSTR_y1);
int16_t x2, y2;
// if x2 or y2 is None, then set as the maximum size of the source bitmap
if (args[ARG_x2].u_obj == mp_const_none) {
x2 = source->width;
} else {
x2 = mp_arg_validate_int_range(mp_obj_get_int(args[ARG_x2].u_obj), 0, source->width, MP_QSTR_x2);
}
// int16_t y2;
if (args[ARG_y2].u_obj == mp_const_none) {
y2 = source->height;
} else {
y2 = mp_arg_validate_int_range(mp_obj_get_int(args[ARG_y2].u_obj), 0, source->height, MP_QSTR_y2);
}
// Ensure x1 < x2 and y1 < y2
if (x1 > x2) {
int16_t temp = x2;
x2 = x1;
x1 = temp;
}
if (y1 > y2) {
int16_t temp = y2;
y2 = y1;
y1 = temp;
}
uint32_t skip_source_index;
bool skip_source_index_none; // flag whether skip_value was None
if (args[ARG_skip_source_index].u_obj == mp_const_none) {
skip_source_index = 0;
skip_source_index_none = true;
} else {
skip_source_index = mp_obj_get_int(args[ARG_skip_source_index].u_obj);
skip_source_index_none = false;
}
uint32_t skip_dest_index;
bool skip_dest_index_none; // flag whether skip_self_value was None
if (args[ARG_skip_dest_index].u_obj == mp_const_none) {
skip_dest_index = 0;
skip_dest_index_none = true;
} else {
skip_dest_index = mp_obj_get_int(args[ARG_skip_dest_index].u_obj);
skip_dest_index_none = false;
}
common_hal_bitmaptools_blit(destination, source, x, y, x1, y1, x2, y2, skip_source_index, skip_source_index_none, skip_dest_index,
skip_dest_index_none);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(bitmaptools_blit_obj, 1, bitmaptools_obj_blit);
STATIC const mp_rom_map_elem_t bitmaptools_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_bitmaptools) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&bitmaptools_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_rotozoom), MP_ROM_PTR(&bitmaptools_rotozoom_obj) },
{ MP_ROM_QSTR(MP_QSTR_arrayblit), MP_ROM_PTR(&bitmaptools_arrayblit_obj) },
{ MP_ROM_QSTR(MP_QSTR_alphablend), MP_ROM_PTR(&bitmaptools_alphablend_obj) },
{ MP_ROM_QSTR(MP_QSTR_fill_region), MP_ROM_PTR(&bitmaptools_fill_region_obj) },
{ MP_ROM_QSTR(MP_QSTR_boundary_fill), MP_ROM_PTR(&bitmaptools_boundary_fill_obj) },
{ MP_ROM_QSTR(MP_QSTR_draw_line), MP_ROM_PTR(&bitmaptools_draw_line_obj) },
{ MP_ROM_QSTR(MP_QSTR_draw_polygon), MP_ROM_PTR(&bitmaptools_draw_polygon_obj) },
{ MP_ROM_QSTR(MP_QSTR_draw_circle), MP_ROM_PTR(&bitmaptools_draw_circle_obj) },
{ MP_ROM_QSTR(MP_QSTR_blit), MP_ROM_PTR(&bitmaptools_blit_obj) },
{ MP_ROM_QSTR(MP_QSTR_dither), MP_ROM_PTR(&bitmaptools_dither_obj) },
{ MP_ROM_QSTR(MP_QSTR_BlendMode), MP_ROM_PTR(&bitmaptools_blendmode_type) },
{ MP_ROM_QSTR(MP_QSTR_DitherAlgorithm), MP_ROM_PTR(&bitmaptools_dither_algorithm_type) },
};
STATIC MP_DEFINE_CONST_DICT(bitmaptools_module_globals, bitmaptools_module_globals_table);
const mp_obj_module_t bitmaptools_module = {
.base = {&mp_type_module },
.globals = (mp_obj_dict_t *)&bitmaptools_module_globals,
};
MP_REGISTER_MODULE(MP_QSTR_bitmaptools, bitmaptools_module);