circuitpython/ports/raspberrypi/bindings/rp2pio/StateMachine.c

869 lines
44 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// This file contains all of the Python API definitions for the
// rp2pio.StateMachine class.
#include <string.h>
#include "shared-bindings/microcontroller/Pin.h"
#include "bindings/rp2pio/StateMachine.h"
#include "shared-bindings/util.h"
#include "shared/runtime/buffer_helper.h"
#include "shared/runtime/context_manager_helpers.h"
#include "shared/runtime/interrupt_char.h"
#include "py/binary.h"
#include "py/mperrno.h"
#include "py/objproperty.h"
#include "py/runtime.h"
//| class StateMachine:
//| """A single PIO StateMachine
//|
//| The programmable I/O peripheral on the RP2 series of microcontrollers is
//| unique. It is a collection of generic state machines that can be
//| used for a variety of protocols. State machines may be independent or
//| coordinated. Program memory and IRQs are shared between the state machines
//| in a particular PIO instance. They are independent otherwise.
//|
//| This class is designed to facilitate sharing of PIO resources. By default,
//| it is assumed that the state machine is used on its own and can be placed
//| in either PIO. State machines with the same program will be placed in the
//| same PIO if possible."""
//|
//| def __init__(
//| self,
//| program: ReadableBuffer,
//| frequency: int,
//| *,
//| may_exec: Optional[ReadableBuffer] = None,
//| init: Optional[ReadableBuffer] = None,
//| first_out_pin: Optional[microcontroller.Pin] = None,
//| out_pin_count: int = 1,
//| initial_out_pin_state: int = 0,
//| initial_out_pin_direction: int = 0xFFFFFFFF,
//| first_in_pin: Optional[microcontroller.Pin] = None,
//| in_pin_count: int = 1,
//| pull_in_pin_up: int = 0,
//| pull_in_pin_down: int = 0,
//| first_set_pin: Optional[microcontroller.Pin] = None,
//| set_pin_count: int = 1,
//| initial_set_pin_state: int = 0,
//| initial_set_pin_direction: int = 0x1F,
//| first_sideset_pin: Optional[microcontroller.Pin] = None,
//| sideset_pin_count: int = 1,
//| initial_sideset_pin_state: int = 0,
//| initial_sideset_pin_direction: int = 0x1F,
//| sideset_enable: bool = False,
//| jmp_pin: Optional[microcontroller.Pin] = None,
//| jmp_pin_pull: Optional[digitalio.Pull] = None,
//| exclusive_pin_use: bool = True,
//| auto_pull: bool = False,
//| pull_threshold: int = 32,
//| out_shift_right: bool = True,
//| wait_for_txstall: bool = True,
//| auto_push: bool = False,
//| push_threshold: int = 32,
//| in_shift_right: bool = True,
//| user_interruptible: bool = True,
//| wrap_target: int = 0,
//| wrap: int = -1,
//| offset: int = -1,
//| ) -> None:
//| """Construct a StateMachine object on the given pins with the given program.
//|
//| :param ReadableBuffer program: the program to run with the state machine
//| :param int frequency: the target clock frequency of the state machine. Actual may be less. Use 0 for system clock speed.
//| :param ReadableBuffer init: a program to run once at start up. This is run after program
//| is started so instructions may be intermingled
//| :param ReadableBuffer may_exec: Instructions that may be executed via `StateMachine.run` calls.
//| Some elements of the `StateMachine`'s configuration are inferred from the instructions used;
//| for instance, if there is no ``in`` or ``push`` instruction, then the `StateMachine` is configured without a receive FIFO.
//| In this case, passing a ``may_exec`` program containing an ``in`` instruction such as ``in x``, a receive FIFO will be configured.
//| :param ~microcontroller.Pin first_out_pin: the first pin to use with the OUT instruction
//| :param int out_pin_count: the count of consecutive pins to use with OUT starting at first_out_pin
//| :param int initial_out_pin_state: the initial output value for out pins starting at first_out_pin
//| :param int initial_out_pin_direction: the initial output direction for out pins starting at first_out_pin
//| :param ~microcontroller.Pin first_in_pin: the first pin to use with the IN instruction
//| :param int in_pin_count: the count of consecutive pins to use with IN starting at first_in_pin
//| :param int pull_in_pin_up: a 1-bit in this mask sets pull up on the corresponding in pin
//| :param int pull_in_pin_down: a 1-bit in this mask sets pull down on the corresponding in pin. Setting both pulls enables a "bus keep" function, i.e. a weak pull to whatever is current high/low state of GPIO.
//| :param ~microcontroller.Pin first_set_pin: the first pin to use with the SET instruction
//| :param int set_pin_count: the count of consecutive pins to use with SET starting at first_set_pin
//| :param int initial_set_pin_state: the initial output value for set pins starting at first_set_pin
//| :param int initial_set_pin_direction: the initial output direction for set pins starting at first_set_pin
//| :param ~microcontroller.Pin first_sideset_pin: the first pin to use with a side set
//| :param int sideset_pin_count: the count of consecutive pins to use with a side set starting at first_sideset_pin. Does not include sideset enable
//| :param int initial_sideset_pin_state: the initial output value for sideset pins starting at first_sideset_pin
//| :param int initial_sideset_pin_direction: the initial output direction for sideset pins starting at first_sideset_pin
//| :param bool sideset_enable: True when the top sideset bit is to enable. This should be used with the ".side_set # opt" directive
//| :param ~microcontroller.Pin jmp_pin: the pin which determines the branch taken by JMP PIN instructions
//| :param ~digitalio.Pull jmp_pin_pull: The pull value for the jmp pin, default is no pull.
//| :param bool exclusive_pin_use: When True, do not share any pins with other state machines. Pins are never shared with other peripherals
//| :param bool auto_pull: When True, automatically load data from the tx FIFO into the
//| output shift register (OSR) when an OUT instruction shifts more than pull_threshold bits
//| :param int pull_threshold: Number of bits to shift before loading a new value into the OSR from the tx FIFO
//| :param bool out_shift_right: When True, data is shifted out the right side (LSB) of the
//| OSR. It is shifted out the left (MSB) otherwise. NOTE! This impacts data alignment
//| when the number of bytes is not a power of two (1, 2 or 4 bytes).
//| :param bool wait_for_txstall: When True, writing data out will block until the TX FIFO and OSR are empty
//| and an instruction is stalled waiting for more data. When False, data writes won't
//| wait for the OSR to empty (only the TX FIFO) so make sure you give enough time before
//| deiniting or stopping the state machine.
//| :param bool auto_push: When True, automatically save data from input shift register
//| (ISR) into the rx FIFO when an IN instruction shifts more than push_threshold bits
//| :param int push_threshold: Number of bits to shift before saving the ISR value to the RX FIFO
//| :param bool in_shift_right: When True, data is shifted into the right side (LSB) of the
//| ISR. It is shifted into the left (MSB) otherwise. NOTE! This impacts data alignment
//| when the number of bytes is not a power of two (1, 2 or 4 bytes).
//| :param bool user_interruptible: When True (the default),
//| `write()`, `readinto()`, and `write_readinto()` can be interrupted by a ctrl-C.
//| This is useful when developing a PIO program: if there is an error in the program
//| that causes an infinite loop, you will be able to interrupt the loop.
//| However, if you are writing to a device that can get into a bad state if a read or write
//| is interrupted, you may want to set this to False after your program has been vetted.
//| :param int wrap_target: The target instruction number of automatic wrap. Defaults to the first instruction of the program.
//| :param int wrap: The instruction after which to wrap to the ``wrap``
//| instruction. As a special case, -1 (the default) indicates the
//| last instruction of the program.
//| :param int offset: A specific offset in the state machine's program memory where the program must be loaded.
//| The default value, -1, allows the program to be loaded at any offset.
//| This is appropriate for most programs.
//| """
//| ...
STATIC mp_obj_t rp2pio_statemachine_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
rp2pio_statemachine_obj_t *self = mp_obj_malloc(rp2pio_statemachine_obj_t, &rp2pio_statemachine_type);
enum { ARG_program, ARG_frequency, ARG_init, ARG_may_exec,
ARG_first_out_pin, ARG_out_pin_count, ARG_initial_out_pin_state, ARG_initial_out_pin_direction,
ARG_first_in_pin, ARG_in_pin_count,
ARG_pull_in_pin_up, ARG_pull_in_pin_down,
ARG_first_set_pin, ARG_set_pin_count, ARG_initial_set_pin_state, ARG_initial_set_pin_direction,
ARG_first_sideset_pin, ARG_sideset_pin_count, ARG_initial_sideset_pin_state, ARG_initial_sideset_pin_direction,
ARG_sideset_enable,
ARG_jmp_pin, ARG_jmp_pin_pull,
ARG_exclusive_pin_use,
ARG_auto_pull, ARG_pull_threshold, ARG_out_shift_right,
ARG_wait_for_txstall,
ARG_auto_push, ARG_push_threshold, ARG_in_shift_right,
ARG_user_interruptible,
ARG_wrap_target,
ARG_wrap,
ARG_offset, };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_program, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_frequency, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_init, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_may_exec, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_first_out_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_out_pin_count, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_initial_out_pin_state, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_initial_out_pin_direction, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
{ MP_QSTR_first_in_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_in_pin_count, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_pull_in_pin_up, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_pull_in_pin_down, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_first_set_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_set_pin_count, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_initial_set_pin_state, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_initial_set_pin_direction, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x1f} },
{ MP_QSTR_first_sideset_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_sideset_pin_count, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_initial_sideset_pin_state, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_initial_sideset_pin_direction, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x1f} },
{ MP_QSTR_sideset_enable, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_jmp_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_jmp_pin_pull, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_exclusive_pin_use, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} },
{ MP_QSTR_auto_pull, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_pull_threshold, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 32} },
{ MP_QSTR_out_shift_right, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} },
{ MP_QSTR_wait_for_txstall, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} },
{ MP_QSTR_auto_push, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_push_threshold, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 32} },
{ MP_QSTR_in_shift_right, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} },
{ MP_QSTR_user_interruptible, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} },
{ MP_QSTR_wrap_target, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_wrap, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_offset, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[ARG_program].u_obj, &bufinfo, MP_BUFFER_READ);
mp_buffer_info_t init_bufinfo;
init_bufinfo.len = 0;
mp_get_buffer(args[ARG_init].u_obj, &init_bufinfo, MP_BUFFER_READ);
mp_buffer_info_t may_exec_bufinfo;
may_exec_bufinfo.len = 0;
mp_get_buffer(args[ARG_may_exec].u_obj, &may_exec_bufinfo, MP_BUFFER_READ);
// We don't validate pin in use here because we may be ok sharing them within a PIO.
const mcu_pin_obj_t *first_out_pin =
validate_obj_is_pin_or_none(args[ARG_first_out_pin].u_obj, MP_QSTR_first_out_pin);
mp_int_t out_pin_count = mp_arg_validate_int_min(args[ARG_out_pin_count].u_int, 1, MP_QSTR_out_pin_count);
const mcu_pin_obj_t *first_in_pin =
validate_obj_is_pin_or_none(args[ARG_first_in_pin].u_obj, MP_QSTR_first_in_pin);
mp_int_t in_pin_count = mp_arg_validate_int_min(args[ARG_in_pin_count].u_int, 1, MP_QSTR_in_pin_count);
const mcu_pin_obj_t *first_set_pin =
validate_obj_is_pin_or_none(args[ARG_first_set_pin].u_obj, MP_QSTR_first_set_pin);
mp_int_t set_pin_count = mp_arg_validate_int_range(args[ARG_set_pin_count].u_int, 1, 5, MP_QSTR_set_pin_count);
const mcu_pin_obj_t *first_sideset_pin =
validate_obj_is_pin_or_none(args[ARG_first_sideset_pin].u_obj, MP_QSTR_first_sideset_pin);
mp_int_t sideset_pin_count =
mp_arg_validate_int_range(args[ARG_sideset_pin_count].u_int, 1, 5, MP_QSTR_set_pin_count);
const mcu_pin_obj_t *jmp_pin =
validate_obj_is_pin_or_none(args[ARG_jmp_pin].u_obj, MP_QSTR_jmp_pin);
digitalio_pull_t jmp_pin_pull = validate_pull(args[ARG_jmp_pin_pull].u_rom_obj, MP_QSTR_jmp_pull);
mp_int_t pull_threshold =
mp_arg_validate_int_range(args[ARG_pull_threshold].u_int, 1, 32, MP_QSTR_pull_threshold);
mp_int_t push_threshold =
mp_arg_validate_int_range(args[ARG_push_threshold].u_int, 1, 32, MP_QSTR_push_threshold);
mp_arg_validate_length_range(bufinfo.len, 2, 64, MP_QSTR_program);
if (bufinfo.len % 2 != 0) {
mp_raise_ValueError(MP_ERROR_TEXT("Program size invalid"));
}
mp_arg_validate_length_range(init_bufinfo.len, 0, 64, MP_QSTR_init);
if (init_bufinfo.len % 2 != 0) {
mp_raise_ValueError(MP_ERROR_TEXT("Init program size invalid"));
}
int wrap = args[ARG_wrap].u_int;
int wrap_target = args[ARG_wrap_target].u_int;
common_hal_rp2pio_statemachine_construct(self,
bufinfo.buf, bufinfo.len / 2,
args[ARG_frequency].u_int,
init_bufinfo.buf, init_bufinfo.len / 2,
may_exec_bufinfo.buf, may_exec_bufinfo.len / 2,
first_out_pin, out_pin_count, args[ARG_initial_out_pin_state].u_int, args[ARG_initial_out_pin_direction].u_int,
first_in_pin, in_pin_count, args[ARG_pull_in_pin_up].u_int, args[ARG_pull_in_pin_down].u_int,
first_set_pin, set_pin_count, args[ARG_initial_set_pin_state].u_int, args[ARG_initial_set_pin_direction].u_int,
first_sideset_pin, sideset_pin_count, args[ARG_initial_sideset_pin_state].u_int, args[ARG_initial_sideset_pin_direction].u_int,
args[ARG_sideset_enable].u_bool,
jmp_pin, jmp_pin_pull,
0,
args[ARG_exclusive_pin_use].u_bool,
args[ARG_auto_pull].u_bool, pull_threshold, args[ARG_out_shift_right].u_bool,
args[ARG_wait_for_txstall].u_bool,
args[ARG_auto_push].u_bool, push_threshold, args[ARG_in_shift_right].u_bool,
args[ARG_user_interruptible].u_bool,
wrap_target, wrap, args[ARG_offset].u_int);
return MP_OBJ_FROM_PTR(self);
}
//| def deinit(self) -> None:
//| """Turn off the state machine and release its resources."""
//| ...
STATIC mp_obj_t rp2pio_statemachine_obj_deinit(mp_obj_t self_in) {
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
common_hal_rp2pio_statemachine_deinit(self);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_deinit_obj, rp2pio_statemachine_obj_deinit);
//| def __enter__(self) -> StateMachine:
//| """No-op used by Context Managers.
//| Provided by context manager helper."""
//| ...
//| def __exit__(self) -> None:
//| """Automatically deinitializes the hardware when exiting a context. See
//| :ref:`lifetime-and-contextmanagers` for more info."""
//| ...
STATIC mp_obj_t rp2pio_statemachine_obj___exit__(size_t n_args, const mp_obj_t *args) {
(void)n_args;
common_hal_rp2pio_statemachine_deinit(args[0]);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2pio_statemachine_obj___exit___obj, 4, 4, rp2pio_statemachine_obj___exit__);
STATIC void check_for_deinit(rp2pio_statemachine_obj_t *self) {
if (common_hal_rp2pio_statemachine_deinited(self)) {
raise_deinited_error();
}
}
//| def restart(self) -> None:
//| """Resets this state machine, runs any init and enables the clock."""
//| ...
// TODO: "and any others given. They must share an underlying PIO. An exception will be raised otherwise.""
STATIC mp_obj_t rp2pio_statemachine_restart(mp_obj_t self_obj) {
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_obj);
check_for_deinit(self);
common_hal_rp2pio_statemachine_restart(self);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_restart_obj, rp2pio_statemachine_restart);
//| def run(self, instructions: ReadableBuffer) -> None:
//| """Runs all given instructions. They will likely be interleaved with
//| in-memory instructions. Make sure this doesn't wait for input!
//|
//| This can be used to output internal state to the RX FIFO and then
//| read with `readinto`."""
//| ...
STATIC mp_obj_t rp2pio_statemachine_run(mp_obj_t self_obj, mp_obj_t instruction_obj) {
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_obj);
check_for_deinit(self);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(instruction_obj, &bufinfo, MP_BUFFER_READ);
if (bufinfo.len % 2 != 0) {
mp_raise_ValueError(MP_ERROR_TEXT("Program size invalid"));
}
common_hal_rp2pio_statemachine_run(self, bufinfo.buf, (size_t)bufinfo.len / 2);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(rp2pio_statemachine_run_obj, rp2pio_statemachine_run);
//| def stop(self) -> None:
//| """Stops the state machine clock. Use `restart` to enable it."""
//| ...
STATIC mp_obj_t rp2pio_statemachine_stop(mp_obj_t self_obj) {
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_obj);
check_for_deinit(self);
common_hal_rp2pio_statemachine_stop(self);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_stop_obj, rp2pio_statemachine_stop);
//| def write(
//| self,
//| buffer: ReadableBuffer,
//| *,
//| start: int = 0,
//| end: Optional[int] = None,
//| swap: bool = False,
//| ) -> None:
//| """Write the data contained in ``buffer`` to the state machine. If the buffer is empty, nothing happens.
//|
//| Writes to the FIFO will match the input buffer's element size. For example, bytearray elements
//| will perform 8 bit writes to the PIO FIFO. The RP2040's memory bus will duplicate the value into
//| the other byte positions. So, pulling more data in the PIO assembly will read the duplicated values.
//|
//| To perform 16 or 32 bits writes into the FIFO use an `array.array` with a type code of the desired
//| size.
//|
//| :param ~circuitpython_typing.ReadableBuffer buffer: Write out the data in this buffer
//| :param int start: Start of the slice of ``buffer`` to write out: ``buffer[start:end]``
//| :param int end: End of the slice; this index is not included. Defaults to ``len(buffer)``
//| :param bool swap: For 2- and 4-byte elements, swap (reverse) the byte order"""
//| ...
STATIC mp_obj_t rp2pio_statemachine_write(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_buffer, ARG_start, ARG_end, ARG_swap };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_buffer, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} },
{ MP_QSTR_swap, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
};
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
check_for_deinit(self);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_READ);
int stride_in_bytes = mp_binary_get_size('@', bufinfo.typecode, NULL);
if (stride_in_bytes > 4) {
mp_raise_ValueError(MP_ERROR_TEXT("Buffer elements must be 4 bytes long or less"));
}
int32_t start = args[ARG_start].u_int;
size_t length = bufinfo.len / stride_in_bytes;
// Normalize in element size units, not bytes.
normalize_buffer_bounds(&start, args[ARG_end].u_int, &length);
// Treat start and length in terms of bytes from now on.
start *= stride_in_bytes;
length *= stride_in_bytes;
if (length == 0) {
return mp_const_none;
}
bool ok = common_hal_rp2pio_statemachine_write(self, ((uint8_t *)bufinfo.buf) + start, length, stride_in_bytes, args[ARG_swap].u_bool);
if (mp_hal_is_interrupted()) {
return mp_const_none;
}
if (!ok) {
mp_raise_OSError(MP_EIO);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(rp2pio_statemachine_write_obj, 2, rp2pio_statemachine_write);
//| def background_write(
//| self,
//| once: Optional[ReadableBuffer] = None,
//| *,
//| loop: Optional[ReadableBuffer] = None,
//| swap: bool = False,
//| ) -> None:
//| """Write data to the TX fifo in the background, with optional looping.
//|
//| First, if any previous ``once`` or ``loop`` buffer has not been started, this function blocks until they have been started.
//| This means that any ``once`` or ``loop`` buffer will be written at least once.
//| Then the ``once`` and/or ``loop`` buffers are queued. and the function returns.
//| The ``once`` buffer (if specified) will be written just once.
//| Finally, the ``loop`` buffer (if specified) will continue being looped indefinitely.
//|
//| Writes to the FIFO will match the input buffer's element size. For example, bytearray elements
//| will perform 8 bit writes to the PIO FIFO. The RP2040's memory bus will duplicate the value into
//| the other byte positions. So, pulling more data in the PIO assembly will read the duplicated values.
//|
//| To perform 16 or 32 bits writes into the FIFO use an `array.array` with a type code of the desired
//| size, or use `memoryview.cast` to change the interpretation of an
//| existing buffer. To send just part of a larger buffer, slice a `memoryview`
//| of it.
//|
//| If a buffer is modified while it is being written out, the updated
//| values will be used. However, because of interactions between CPU
//| writes, DMA and the PIO FIFO are complex, it is difficult to predict
//| the result of modifying multiple values. Instead, alternate between
//| a pair of buffers.
//|
//| Having both a ``once`` and a ``loop`` parameter is to support a special case in PWM generation
//| where a change in duty cycle requires a special transitional buffer to be used exactly once. Most
//| use cases will probably only use one of ``once`` or ``loop``.
//|
//| Having neither ``once`` nor ``loop`` terminates an existing
//| background looping write after exactly a whole loop. This is in contrast to
//| `stop_background_write`, which interrupts an ongoing DMA operation.
//|
//| :param ~Optional[circuitpython_typing.ReadableBuffer] once: Data to be written once
//| :param ~Optional[circuitpython_typing.ReadableBuffer] loop: Data to be written repeatedly
//| :param bool swap: For 2- and 4-byte elements, swap (reverse) the byte order
//| """
//| ...
STATIC void fill_buf_info(sm_buf_info *info, mp_obj_t obj, size_t *stride_in_bytes) {
if (obj != mp_const_none) {
info->obj = obj;
mp_get_buffer_raise(obj, &info->info, MP_BUFFER_READ);
size_t stride = mp_binary_get_size('@', info->info.typecode, NULL);
if (stride > 4) {
mp_raise_ValueError(MP_ERROR_TEXT("Buffer elements must be 4 bytes long or less"));
}
if (*stride_in_bytes && stride != *stride_in_bytes) {
mp_raise_ValueError(MP_ERROR_TEXT("Mismatched data size"));
}
*stride_in_bytes = stride;
} else {
memset(info, 0, sizeof(*info));
}
}
STATIC mp_obj_t rp2pio_statemachine_background_write(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_once, ARG_loop, ARG_swap };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_once, MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_loop, MP_ARG_OBJ | MP_ARG_KW_ONLY, {.u_obj = mp_const_none} },
{ MP_QSTR_swap, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
};
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
check_for_deinit(self);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
sm_buf_info once_info;
sm_buf_info loop_info;
size_t stride_in_bytes = 0;
fill_buf_info(&once_info, args[ARG_once].u_obj, &stride_in_bytes);
fill_buf_info(&loop_info, args[ARG_loop].u_obj, &stride_in_bytes);
if (!stride_in_bytes) {
return mp_const_none;
}
bool ok = common_hal_rp2pio_statemachine_background_write(self, &once_info, &loop_info, stride_in_bytes, args[ARG_swap].u_bool);
if (mp_hal_is_interrupted()) {
return mp_const_none;
}
if (!ok) {
mp_raise_OSError(MP_EIO);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(rp2pio_statemachine_background_write_obj, 1, rp2pio_statemachine_background_write);
//| def stop_background_write(self) -> None:
//| """Immediately stop a background write, if one is in progress. Any
//| DMA in progress is halted, but items already in the TX FIFO are not
//| affected."""
STATIC mp_obj_t rp2pio_statemachine_obj_stop_background_write(mp_obj_t self_in) {
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
bool ok = common_hal_rp2pio_statemachine_stop_background_write(self);
if (mp_hal_is_interrupted()) {
return mp_const_none;
}
if (!ok) {
mp_raise_OSError(MP_EIO);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_stop_background_write_obj, rp2pio_statemachine_obj_stop_background_write);
//| writing: bool
//| """Returns True if a background write is in progress"""
STATIC mp_obj_t rp2pio_statemachine_obj_get_writing(mp_obj_t self_in) {
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
return mp_obj_new_bool(common_hal_rp2pio_statemachine_get_writing(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_get_writing_obj, rp2pio_statemachine_obj_get_writing);
const mp_obj_property_t rp2pio_statemachine_writing_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&rp2pio_statemachine_get_writing_obj,
MP_ROM_NONE,
MP_ROM_NONE},
};
//| pending: int
//| """Returns the number of pending buffers for background writing.
//|
//| If the number is 0, then a `StateMachine.background_write` call will not block."""
STATIC mp_obj_t rp2pio_statemachine_obj_get_pending(mp_obj_t self_in) {
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
return mp_obj_new_int(common_hal_rp2pio_statemachine_get_pending(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_get_pending_obj, rp2pio_statemachine_obj_get_pending);
const mp_obj_property_t rp2pio_statemachine_pending_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&rp2pio_statemachine_get_pending_obj,
MP_ROM_NONE,
MP_ROM_NONE},
};
//| def readinto(
//| self,
//| buffer: WriteableBuffer,
//| *,
//| start: int = 0,
//| end: Optional[int] = None,
//| swap: bool = False,
//| ) -> None:
//| """Read into ``buffer``. If the number of bytes to read is 0, nothing happens. The buffer
//| includes any data added to the fifo even if it was added before this was called.
//|
//| Reads from the FIFO will match the input buffer's element size. For example, bytearray elements
//| will perform 8 bit reads from the PIO FIFO. The alignment within the 32 bit value depends on
//| ``in_shift_right``. When ``in_shift_right`` is True, the upper N bits will be read. The lower
//| bits will be read when ``in_shift_right`` is False.
//|
//| To perform 16 or 32 bits writes into the FIFO use an `array.array` with a type code of the desired
//| size.
//|
//| :param ~circuitpython_typing.WriteableBuffer buffer: Read data into this buffer
//| :param int start: Start of the slice of ``buffer`` to read into: ``buffer[start:end]``
//| :param int end: End of the slice; this index is not included. Defaults to ``len(buffer)``
//| :param bool swap: For 2- and 4-byte elements, swap (reverse) the byte order"""
//| ...
STATIC mp_obj_t rp2pio_statemachine_readinto(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_buffer, ARG_start, ARG_end, ARG_swap };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_buffer, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} },
{ MP_QSTR_swap, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
};
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
check_for_deinit(self);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_WRITE);
int stride_in_bytes = mp_binary_get_size('@', bufinfo.typecode, NULL);
if (stride_in_bytes > 4) {
mp_raise_ValueError(MP_ERROR_TEXT("Buffer elements must be 4 bytes long or less"));
}
int32_t start = args[ARG_start].u_int;
size_t length = bufinfo.len / stride_in_bytes;
normalize_buffer_bounds(&start, args[ARG_end].u_int, &length);
// Treat start and length in terms of bytes from now on.
start *= stride_in_bytes;
length *= stride_in_bytes;
if (length == 0) {
return mp_const_none;
}
bool ok = common_hal_rp2pio_statemachine_readinto(self, ((uint8_t *)bufinfo.buf) + start, length, stride_in_bytes, args[ARG_swap].u_bool);
if (!ok) {
mp_raise_OSError(MP_EIO);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(rp2pio_statemachine_readinto_obj, 2, rp2pio_statemachine_readinto);
//| def write_readinto(
//| self,
//| buffer_out: ReadableBuffer,
//| buffer_in: WriteableBuffer,
//| *,
//| out_start: int = 0,
//| out_end: Optional[int] = None,
//| in_start: int = 0,
//| in_end: Optional[int] = None,
//| ) -> None:
//| """Write out the data in ``buffer_out`` while simultaneously reading data into ``buffer_in``.
//| The lengths of the slices defined by ``buffer_out[out_start:out_end]`` and ``buffer_in[in_start:in_end]``
//| may be different. The function will return once both are filled.
//| If buffer slice lengths are both 0, nothing happens.
//|
//| Data transfers to and from the FIFOs will match the corresponding buffer's element size. See
//| `write` and `readinto` for details.
//|
//| To perform 16 or 32 bits writes into the FIFO use an `array.array` with a type code of the desired
//| size.
//|
//| :param ~circuitpython_typing.ReadableBuffer buffer_out: Write out the data in this buffer
//| :param ~circuitpython_typing.WriteableBuffer buffer_in: Read data into this buffer
//| :param int out_start: Start of the slice of buffer_out to write out: ``buffer_out[out_start:out_end]``
//| :param int out_end: End of the slice; this index is not included. Defaults to ``len(buffer_out)``
//| :param int in_start: Start of the slice of ``buffer_in`` to read into: ``buffer_in[in_start:in_end]``
//| :param int in_end: End of the slice; this index is not included. Defaults to ``len(buffer_in)``
//| :param bool swap_out: For 2- and 4-byte elements, swap (reverse) the byte order for the buffer being transmitted (written)
//| :param bool swap_in: For 2- and 4-rx elements, swap (reverse) the byte order for the buffer being received (read)
//| """
//| ...
STATIC mp_obj_t rp2pio_statemachine_write_readinto(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_buffer_out, ARG_buffer_in, ARG_out_start, ARG_out_end, ARG_in_start, ARG_in_end, ARG_swap_out, ARG_swap_in };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_buffer_out, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_buffer_in, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_out_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_out_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} },
{ MP_QSTR_in_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_in_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} },
{ MP_QSTR_swap_out, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
{ MP_QSTR_swap_in, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
};
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
check_for_deinit(self);
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_buffer_info_t buf_out_info;
mp_get_buffer_raise(args[ARG_buffer_out].u_obj, &buf_out_info, MP_BUFFER_READ);
int out_stride_in_bytes = mp_binary_get_size('@', buf_out_info.typecode, NULL);
if (out_stride_in_bytes > 4) {
mp_raise_ValueError(MP_ERROR_TEXT("Out-buffer elements must be <= 4 bytes long"));
}
int32_t out_start = args[ARG_out_start].u_int;
size_t out_length = buf_out_info.len / out_stride_in_bytes;
normalize_buffer_bounds(&out_start, args[ARG_out_end].u_int, &out_length);
mp_buffer_info_t buf_in_info;
mp_get_buffer_raise(args[ARG_buffer_in].u_obj, &buf_in_info, MP_BUFFER_WRITE);
int in_stride_in_bytes = mp_binary_get_size('@', buf_in_info.typecode, NULL);
if (in_stride_in_bytes > 4) {
mp_raise_ValueError(MP_ERROR_TEXT("In-buffer elements must be <= 4 bytes long"));
}
int32_t in_start = args[ARG_in_start].u_int;
size_t in_length = buf_in_info.len / in_stride_in_bytes;
normalize_buffer_bounds(&in_start, args[ARG_in_end].u_int, &in_length);
// Treat start and length in terms of bytes from now on.
out_start *= out_stride_in_bytes;
out_length *= out_stride_in_bytes;
in_start *= in_stride_in_bytes;
in_length *= in_stride_in_bytes;
if (out_length == 0 && in_length == 0) {
return mp_const_none;
}
bool ok = common_hal_rp2pio_statemachine_write_readinto(self,
((uint8_t *)buf_out_info.buf) + out_start,
out_length,
out_stride_in_bytes,
((uint8_t *)buf_in_info.buf) + in_start,
in_length,
in_stride_in_bytes, args[ARG_swap_out].u_bool, args[ARG_swap_in].u_bool);
if (!ok) {
mp_raise_OSError(MP_EIO);
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(rp2pio_statemachine_write_readinto_obj, 2, rp2pio_statemachine_write_readinto);
//| def clear_rxfifo(self) -> None:
//| """Clears any unread bytes in the rxfifo."""
//| ...
STATIC mp_obj_t rp2pio_statemachine_obj_clear_rxfifo(mp_obj_t self_in) {
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
common_hal_rp2pio_statemachine_clear_rxfifo(self);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_clear_rxfifo_obj, rp2pio_statemachine_obj_clear_rxfifo);
//| def clear_txstall(self) -> None:
//| """Clears the txstall flag."""
//| ...
STATIC mp_obj_t rp2pio_statemachine_obj_clear_txstall(mp_obj_t self_in) {
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
common_hal_rp2pio_statemachine_clear_txstall(self);
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_clear_txstall_obj, rp2pio_statemachine_obj_clear_txstall);
//| frequency: int
//| """The actual state machine frequency. This may not match the frequency requested
//| due to internal limitations."""
STATIC mp_obj_t rp2pio_statemachine_obj_get_frequency(mp_obj_t self_in) {
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
return MP_OBJ_NEW_SMALL_INT(common_hal_rp2pio_statemachine_get_frequency(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_get_frequency_obj, rp2pio_statemachine_obj_get_frequency);
STATIC mp_obj_t rp2pio_statemachine_obj_set_frequency(mp_obj_t self_in, mp_obj_t frequency) {
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
common_hal_rp2pio_statemachine_set_frequency(self, mp_obj_get_int(frequency));
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_2(rp2pio_statemachine_set_frequency_obj, rp2pio_statemachine_obj_set_frequency);
MP_PROPERTY_GETSET(rp2pio_statemachine_frequency_obj,
(mp_obj_t)&rp2pio_statemachine_get_frequency_obj,
(mp_obj_t)&rp2pio_statemachine_set_frequency_obj);
//| txstall: bool
//| """True when the state machine has stalled due to a full TX FIFO since the last
//| `clear_txstall` call."""
STATIC mp_obj_t rp2pio_statemachine_obj_get_txstall(mp_obj_t self_in) {
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
return MP_OBJ_NEW_SMALL_INT(common_hal_rp2pio_statemachine_get_txstall(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_get_txstall_obj, rp2pio_statemachine_obj_get_txstall);
const mp_obj_property_t rp2pio_statemachine_txstall_obj = {
.base.type = &mp_type_property,
.proxy = {(mp_obj_t)&rp2pio_statemachine_get_txstall_obj,
MP_ROM_NONE,
MP_ROM_NONE},
};
//| rxstall: bool
//| """True when the state machine has stalled due to a full RX FIFO since the last
//| `clear_rxfifo` call."""
STATIC mp_obj_t rp2pio_statemachine_obj_get_rxstall(mp_obj_t self_in) {
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
return MP_OBJ_NEW_SMALL_INT(common_hal_rp2pio_statemachine_get_rxstall(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_get_rxstall_obj, rp2pio_statemachine_obj_get_rxstall);
MP_PROPERTY_GETTER(rp2pio_statemachine_rxstall_obj,
(mp_obj_t)&rp2pio_statemachine_get_rxstall_obj);
//| in_waiting: int
//| """The number of words available to readinto"""
//|
STATIC mp_obj_t rp2pio_statemachine_obj_get_in_waiting(mp_obj_t self_in) {
rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in);
check_for_deinit(self);
return MP_OBJ_NEW_SMALL_INT(common_hal_rp2pio_statemachine_get_in_waiting(self));
}
MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_get_in_waiting_obj, rp2pio_statemachine_obj_get_in_waiting);
MP_PROPERTY_GETTER(rp2pio_statemachine_in_waiting_obj,
(mp_obj_t)&rp2pio_statemachine_get_in_waiting_obj);
STATIC const mp_rom_map_elem_t rp2pio_statemachine_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&rp2pio_statemachine_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR___enter__), MP_ROM_PTR(&default___enter___obj) },
{ MP_ROM_QSTR(MP_QSTR___exit__), MP_ROM_PTR(&rp2pio_statemachine_obj___exit___obj) },
{ MP_ROM_QSTR(MP_QSTR_stop), MP_ROM_PTR(&rp2pio_statemachine_stop_obj) },
{ MP_ROM_QSTR(MP_QSTR_restart), MP_ROM_PTR(&rp2pio_statemachine_restart_obj) },
{ MP_ROM_QSTR(MP_QSTR_run), MP_ROM_PTR(&rp2pio_statemachine_run_obj) },
{ MP_ROM_QSTR(MP_QSTR_clear_rxfifo), MP_ROM_PTR(&rp2pio_statemachine_clear_rxfifo_obj) },
{ MP_ROM_QSTR(MP_QSTR_clear_txstall), MP_ROM_PTR(&rp2pio_statemachine_clear_txstall_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&rp2pio_statemachine_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&rp2pio_statemachine_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&rp2pio_statemachine_write_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_background_write), MP_ROM_PTR(&rp2pio_statemachine_background_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_stop_background_write), MP_ROM_PTR(&rp2pio_statemachine_stop_background_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_writing), MP_ROM_PTR(&rp2pio_statemachine_writing_obj) },
{ MP_ROM_QSTR(MP_QSTR_pending), MP_ROM_PTR(&rp2pio_statemachine_pending_obj) },
{ MP_ROM_QSTR(MP_QSTR_frequency), MP_ROM_PTR(&rp2pio_statemachine_frequency_obj) },
{ MP_ROM_QSTR(MP_QSTR_rxstall), MP_ROM_PTR(&rp2pio_statemachine_rxstall_obj) },
{ MP_ROM_QSTR(MP_QSTR_txstall), MP_ROM_PTR(&rp2pio_statemachine_txstall_obj) },
{ MP_ROM_QSTR(MP_QSTR_in_waiting), MP_ROM_PTR(&rp2pio_statemachine_in_waiting_obj) },
};
STATIC MP_DEFINE_CONST_DICT(rp2pio_statemachine_locals_dict, rp2pio_statemachine_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
rp2pio_statemachine_type,
MP_QSTR_StateMachine,
MP_TYPE_FLAG_HAS_SPECIAL_ACCESSORS,
make_new, rp2pio_statemachine_make_new,
locals_dict, &rp2pio_statemachine_locals_dict
);