/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2019 Dan Halbert for Adafruit Industries * Copyright (c) 2018 Artur Pacholec * Copyright (c) 2017 hathach * Copyright (c) 2016 Sandeep Mistry All right reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/busio/I2C.h" #include "shared-bindings/microcontroller/__init__.h" #include "shared-bindings/microcontroller/Pin.h" #include "py/mperrno.h" #include "py/runtime.h" #include "supervisor/shared/translate/translate.h" #include "nrfx_twim.h" #include "nrfx_spim.h" #include "nrf_gpio.h" // all TWI instances have the same max size // 16 bits for 840, 10 bits for 810, 8 bits for 832 #define I2C_MAX_XFER_LEN ((1UL << TWIM0_EASYDMA_MAXCNT_SIZE) - 1) STATIC twim_peripheral_t twim_peripherals[] = { #if NRFX_CHECK(NRFX_TWIM0_ENABLED) // SPIM0 and TWIM0 share an address. { .twim = NRFX_TWIM_INSTANCE(0), .in_use = false}, #endif #if NRFX_CHECK(NRFX_TWIM1_ENABLED) // SPIM1 and TWIM1 share an address. { .twim = NRFX_TWIM_INSTANCE(1), .in_use = false}, #endif }; STATIC bool never_reset[MP_ARRAY_SIZE(twim_peripherals)]; void i2c_reset(void) { for (size_t i = 0; i < MP_ARRAY_SIZE(twim_peripherals); i++) { if (never_reset[i]) { continue; } nrfx_twim_uninit(&twim_peripherals[i].twim); twim_peripherals[i].in_use = false; } } void common_hal_busio_i2c_never_reset(busio_i2c_obj_t *self) { for (size_t i = 0; i < MP_ARRAY_SIZE(twim_peripherals); i++) { if (self->twim_peripheral == &twim_peripherals[i]) { never_reset[i] = true; never_reset_pin_number(self->scl_pin_number); never_reset_pin_number(self->sda_pin_number); break; } } } static bool _bus_is_sane(uint32_t scl_pin, uint32_t sda_pin) { #if CIRCUITPY_REQUIRE_I2C_PULLUPS nrf_gpio_cfg_input(scl_pin, NRF_GPIO_PIN_PULLDOWN); nrf_gpio_cfg_input(sda_pin, NRF_GPIO_PIN_PULLDOWN); common_hal_mcu_delay_us(10); nrf_gpio_cfg_input(scl_pin, NRF_GPIO_PIN_NOPULL); nrf_gpio_cfg_input(sda_pin, NRF_GPIO_PIN_NOPULL); // We must pull up within 3us to achieve 400khz. common_hal_mcu_delay_us(3); if (!nrf_gpio_pin_read(sda_pin) || !nrf_gpio_pin_read(scl_pin)) { return false; } else { return true; } #else return true; #endif } static nrfx_err_t _safe_twim_enable(busio_i2c_obj_t *self) { // check to see if bus is in sensible state before enabling twim nrfx_err_t recover_result; if (!_bus_is_sane(self->scl_pin_number, self->sda_pin_number)) { // bus not in a sane state - try to recover recover_result = nrfx_twim_bus_recover(self->scl_pin_number, self->sda_pin_number); if (NRFX_SUCCESS != recover_result) { // return error message if unable to recover the bus return recover_result; } } nrfx_twim_enable(&self->twim_peripheral->twim); return NRFX_SUCCESS; } static uint8_t twi_error_to_mp(const nrfx_err_t err) { switch (err) { case NRFX_ERROR_DRV_TWI_ERR_ANACK: return MP_ENODEV; case NRFX_ERROR_BUSY: return MP_EBUSY; case NRFX_SUCCESS: return 0; case NRFX_ERROR_DRV_TWI_ERR_DNACK: case NRFX_ERROR_INVALID_ADDR: case NRFX_ERROR_INTERNAL: default: return MP_EIO; } } void common_hal_busio_i2c_construct(busio_i2c_obj_t *self, const mcu_pin_obj_t *scl, const mcu_pin_obj_t *sda, uint32_t frequency, uint32_t timeout) { if (scl->number == sda->number) { raise_ValueError_invalid_pins(); } // Find a free instance. self->twim_peripheral = NULL; for (size_t i = 0; i < MP_ARRAY_SIZE(twim_peripherals); i++) { if (!twim_peripherals[i].in_use) { self->twim_peripheral = &twim_peripherals[i]; // Mark it as in_use later after other validation is finished. break; } } if (self->twim_peripheral == NULL) { mp_raise_ValueError(translate("All I2C peripherals are in use")); } // check bus is in a sane state if (!_bus_is_sane(scl->number,sda->number)) { reset_pin_number(sda->number); reset_pin_number(scl->number); mp_raise_RuntimeError(translate("No pull up found on SDA or SCL; check your wiring")); } nrfx_twim_config_t config = NRFX_TWIM_DEFAULT_CONFIG(scl->number, sda->number); #if defined(TWIM_FREQUENCY_FREQUENCY_K1000) if (frequency >= 1000000) { config.frequency = NRF_TWIM_FREQ_1000K; } else #endif if (frequency >= 400000) { config.frequency = NRF_TWIM_FREQ_400K; } else if (frequency >= 250000) { config.frequency = NRF_TWIM_FREQ_250K; } else { config.frequency = NRF_TWIM_FREQ_100K; } self->scl_pin_number = scl->number; self->sda_pin_number = sda->number; claim_pin(sda); claim_pin(scl); // About to init. If we fail after this point, common_hal_busio_i2c_deinit() will set in_use to false. self->twim_peripheral->in_use = true; nrfx_err_t err = nrfx_twim_init(&self->twim_peripheral->twim, &config, NULL, NULL); if (err != NRFX_SUCCESS) { common_hal_busio_i2c_deinit(self); mp_raise_OSError(MP_EIO); } } bool common_hal_busio_i2c_deinited(busio_i2c_obj_t *self) { return self->sda_pin_number == NO_PIN; } void common_hal_busio_i2c_deinit(busio_i2c_obj_t *self) { if (common_hal_busio_i2c_deinited(self)) { return; } nrfx_twim_uninit(&self->twim_peripheral->twim); reset_pin_number(self->sda_pin_number); reset_pin_number(self->scl_pin_number); self->sda_pin_number = NO_PIN; self->scl_pin_number = NO_PIN; self->twim_peripheral->in_use = false; } // nrfx_twim_tx doesn't support 0-length data so we fall back to the hal API bool common_hal_busio_i2c_probe(busio_i2c_obj_t *self, uint8_t addr) { NRF_TWIM_Type *reg = self->twim_peripheral->twim.p_twim; bool found = true; if (NRFX_SUCCESS != _safe_twim_enable(self)) { return false; } nrf_twim_address_set(reg, addr); nrf_twim_tx_buffer_set(reg, NULL, 0); nrf_twim_task_trigger(reg, NRF_TWIM_TASK_RESUME); nrf_twim_task_trigger(reg, NRF_TWIM_TASK_STARTTX); while (nrf_twim_event_check(reg, NRF_TWIM_EVENT_TXSTARTED) == 0 && nrf_twim_event_check(reg, NRF_TWIM_EVENT_ERROR) == 0) { ; } nrf_twim_event_clear(reg, NRF_TWIM_EVENT_TXSTARTED); nrf_twim_task_trigger(reg, NRF_TWIM_TASK_STOP); while (nrf_twim_event_check(reg, NRF_TWIM_EVENT_STOPPED) == 0) { ; } nrf_twim_event_clear(reg, NRF_TWIM_EVENT_STOPPED); if (nrf_twim_event_check(reg, NRF_TWIM_EVENT_ERROR)) { nrf_twim_event_clear(reg, NRF_TWIM_EVENT_ERROR); nrf_twim_errorsrc_get_and_clear(reg); found = false; } nrfx_twim_disable(&self->twim_peripheral->twim); return found; } bool common_hal_busio_i2c_try_lock(busio_i2c_obj_t *self) { bool grabbed_lock = false; // NRFX_CRITICAL_SECTION_ENTER(); if (!self->has_lock) { grabbed_lock = true; self->has_lock = true; } // NRFX_CRITICAL_SECTION_EXIT(); return grabbed_lock; } bool common_hal_busio_i2c_has_lock(busio_i2c_obj_t *self) { return self->has_lock; } void common_hal_busio_i2c_unlock(busio_i2c_obj_t *self) { self->has_lock = false; } STATIC uint8_t _common_hal_busio_i2c_write(busio_i2c_obj_t *self, uint16_t addr, const uint8_t *data, size_t len, bool stopBit) { if (len == 0) { return common_hal_busio_i2c_probe(self, addr) ? 0 : MP_ENODEV; } nrfx_err_t err = NRFX_SUCCESS; err = _safe_twim_enable(self); if (NRFX_SUCCESS != err) { return twi_error_to_mp(err); } // break into MAX_XFER_LEN transaction while (len) { const size_t xact_len = MIN(len, I2C_MAX_XFER_LEN); nrfx_twim_xfer_desc_t xfer_desc = NRFX_TWIM_XFER_DESC_TX(addr, (uint8_t *)data, xact_len); uint32_t const flags = (stopBit ? 0 : NRFX_TWIM_FLAG_TX_NO_STOP); if (NRFX_SUCCESS != (err = nrfx_twim_xfer(&self->twim_peripheral->twim, &xfer_desc, flags))) { break; } len -= xact_len; data += xact_len; } nrfx_twim_disable(&self->twim_peripheral->twim); return twi_error_to_mp(err); } uint8_t common_hal_busio_i2c_write(busio_i2c_obj_t *self, uint16_t addr, const uint8_t *data, size_t len) { return _common_hal_busio_i2c_write(self, addr, data, len, true); } uint8_t common_hal_busio_i2c_read(busio_i2c_obj_t *self, uint16_t addr, uint8_t *data, size_t len) { if (len == 0) { return 0; } nrfx_err_t err = NRFX_SUCCESS; err = _safe_twim_enable(self); if (NRFX_SUCCESS != err) { return twi_error_to_mp(err); } // break into MAX_XFER_LEN transaction while (len) { const size_t xact_len = MIN(len, I2C_MAX_XFER_LEN); nrfx_twim_xfer_desc_t xfer_desc = NRFX_TWIM_XFER_DESC_RX(addr, data, xact_len); if (NRFX_SUCCESS != (err = nrfx_twim_xfer(&self->twim_peripheral->twim, &xfer_desc, 0))) { break; } len -= xact_len; data += xact_len; } nrfx_twim_disable(&self->twim_peripheral->twim); return twi_error_to_mp(err); } uint8_t common_hal_busio_i2c_write_read(busio_i2c_obj_t *self, uint16_t addr, uint8_t *out_data, size_t out_len, uint8_t *in_data, size_t in_len) { uint8_t result = _common_hal_busio_i2c_write(self, addr, out_data, out_len, false); if (result != 0) { return result; } return common_hal_busio_i2c_read(self, addr, in_data, in_len); }