/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This file contains all of the Python API definitions for the // rp2pio.StateMachine class. #include #include "shared-bindings/microcontroller/Pin.h" #include "bindings/rp2pio/StateMachine.h" #include "shared-bindings/util.h" #include "lib/utils/buffer_helper.h" #include "lib/utils/context_manager_helpers.h" #include "lib/utils/interrupt_char.h" #include "py/mperrno.h" #include "py/objproperty.h" #include "py/runtime.h" #include "supervisor/shared/translate.h" //| class StateMachine: //| """A single PIO StateMachine //| //| The programmable I/O peripheral on the RP2 series of microcontrollers is //| unique. It is a collection of generic state machines that can be //| used for a variety of protocols. State machines may be independent or //| coordinated. Program memory and IRQs are shared between the state machines //| in a particular PIO instance. They are independent otherwise. //| //| This class is designed to facilitate sharing of PIO resources. By default, //| it is assumed that the state machine is used on its own and can be placed //| in either PIO. State machines with the same program will be placed in the //| same PIO if possible. To ensure multiple state machines share a PIO use //| the ``colocate`` kwarg during construction and create them one after another.""" //| //| def __init__(self, //| program: ReadableBuffer, //| frequency: int, //| *, //| init: Optional[ReadableBuffer] = None, //| first_out_pin: Optional[microcontroller.Pin] = None, //| out_pin_count: int = 1, //| first_in_pin: Optional[microcontroller.Pin] = None, //| in_pin_count: int = 1, //| first_set_pin: Optional[microcontroller.Pin] = None, //| set_pin_count: int = 1, //| first_sideset_pin: Optional[microcontroller.Pin] = None, //| sideset_pin_count: int = 1, //| exclusive_pin_use: bool = True, //| auto_pull: bool = False, //| pull_threshold : int = 32, //| out_shift_right : bool = True, //| auto_push: bool = False, //| push_threshold : int = 32, //| in_shift_right : bool = True) -> None: // //| colocate: Union[int, StateMachine, None] = None //| //| """Construct a StateMachine object on the given pins with the given program. //| //| :param ReadableBuffer program: the program to run with the state machine //| :param int frequency: the target clock frequency of the state machine. Actual may be less. //| :param ReadableBuffer init: a program to run once at start up. This is run after program //| is started so instructions may be intermingled //| :param ~microcontroller.Pin first_out_pin: the first pin to use with the OUT instruction //| :param int out_pin_count: the count of consecutive pins to use with OUT starting at first_out_pin //| :param ~microcontroller.Pin first_in_pin: the first pin to use with the IN instruction //| :param int in_pin_count: the count of consecutive pins to use with IN starting at first_in_pin //| :param ~microcontroller.Pin first_set_pin: the first pin to use with the SET instruction //| :param int set_pin_count: the count of consecutive pins to use with SET starting at first_set_pin //| :param ~microcontroller.Pin first_sideset_pin: the first pin to use with a side set //| :param int sideset_pin_count: the count of consecutive pins to use with a side set starting at first_sideset_pin //| :param bool exclusive_pin_use: When True, do not share any pins with other state machines. Pins are never shared with other peripherals //| :param bool auto_pull: When True, automatically load data from the tx FIFO into the //| output shift register (OSR) when an OUT instruction shifts more than pull_threshold bits //| :param int pull_threshold: Number of bits to shift before loading a new value into the OSR from the tx FIFO //| :param bool out_shift_right: When True, data is shifted out the right side (LSB) of the //| OSR. It is shifted out the left (MSB) otherwise. NOTE! This impacts data alignment //| when the number of bytes is not a power of two (1, 2 or 4 bytes). //| :param bool auto_push: When True, automatically save data from input shift register //| (ISR) into the rx FIFO when an IN instruction shifts more than push_threshold bits //| :param int push_threshold: Number of bits to shift before saving the ISR value to the RX FIFO //| :param bool in_shift_right: When True, data is shifted into the right side (LSB) of the //| ISR. It is shifted into the left (MSB) otherwise. NOTE! This impacts data alignment //| when the number of bytes is not a power of two (1, 2 or 4 bytes).""" //| ... //| STATIC mp_obj_t rp2pio_statemachine_make_new(const mp_obj_type_t *type, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { rp2pio_statemachine_obj_t *self = m_new_obj(rp2pio_statemachine_obj_t); self->base.type = &rp2pio_statemachine_type; enum { ARG_program, ARG_frequency, ARG_init, ARG_first_out_pin, ARG_out_pin_count, ARG_first_in_pin, ARG_in_pin_count, ARG_first_set_pin, ARG_set_pin_count, ARG_first_sideset_pin, ARG_sideset_pin_count, ARG_exclusive_pin_use, ARG_auto_pull, ARG_pull_threshold, ARG_out_shift_right, ARG_auto_push, ARG_push_threshold, ARG_in_shift_right}; static const mp_arg_t allowed_args[] = { { MP_QSTR_program, MP_ARG_REQUIRED | MP_ARG_OBJ }, { MP_QSTR_frequency, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_init, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_first_out_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_out_pin_count, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_first_in_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_in_pin_count, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_first_set_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_set_pin_count, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_first_sideset_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_sideset_pin_count, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} }, { MP_QSTR_exclusive_pin_use, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} }, { MP_QSTR_auto_pull, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, { MP_QSTR_pull_threshold, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 32} }, { MP_QSTR_out_shift_right, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} }, { MP_QSTR_auto_push, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, { MP_QSTR_push_threshold, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 32} }, { MP_QSTR_in_shift_right, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = true} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_program].u_obj, &bufinfo, MP_BUFFER_READ); mp_buffer_info_t init_bufinfo; init_bufinfo.len = 0; mp_get_buffer(args[ARG_init].u_obj, &init_bufinfo, MP_BUFFER_READ); // We don't validate pin in use here because we may be ok sharing them within a PIO. mcu_pin_obj_t *first_out_pin = validate_obj_is_pin_or_none(args[ARG_first_out_pin].u_obj); if (args[ARG_out_pin_count].u_int < 1) { mp_raise_ValueError(translate("Pin count must be at least 1")); } mcu_pin_obj_t *first_in_pin = validate_obj_is_pin_or_none(args[ARG_first_in_pin].u_obj); if (args[ARG_in_pin_count].u_int < 1) { mp_raise_ValueError(translate("Pin count must be at least 1")); } mcu_pin_obj_t *first_set_pin = validate_obj_is_pin_or_none(args[ARG_first_set_pin].u_obj); if (args[ARG_set_pin_count].u_int < 1) { mp_raise_ValueError(translate("Pin count must be at least 1")); } if (args[ARG_set_pin_count].u_int > 5) { mp_raise_ValueError(translate("Set pin count must be between 1 and 5")); } mcu_pin_obj_t *first_sideset_pin = validate_obj_is_pin_or_none(args[ARG_first_sideset_pin].u_obj); if (args[ARG_sideset_pin_count].u_int < 1) { mp_raise_ValueError(translate("Pin count must be at least 1")); } if (args[ARG_sideset_pin_count].u_int > 5) { mp_raise_ValueError(translate("Side set pin count must be between 1 and 5")); } mp_int_t pull_threshold = args[ARG_pull_threshold].u_int; mp_int_t push_threshold = args[ARG_push_threshold].u_int; if (pull_threshold < 1 || pull_threshold > 32) { mp_raise_ValueError(translate("pull_threshold must be between 1 and 32")); } if (push_threshold < 1 || push_threshold > 32) { mp_raise_ValueError(translate("push_threshold must be between 1 and 32")); } if (bufinfo.len < 2) { mp_raise_ValueError(translate("Program must contain at least one 16-bit instruction.")); } if (bufinfo.len % 2 != 0) { mp_raise_ValueError(translate("Program size invalid")); } if (bufinfo.len > 32) { mp_raise_ValueError(translate("Program too large")); } if (init_bufinfo.len % 2 != 0) { mp_raise_ValueError(translate("Init program size invalid")); } common_hal_rp2pio_statemachine_construct(self, bufinfo.buf, bufinfo.len / 2, args[ARG_frequency].u_int, init_bufinfo.buf, init_bufinfo.len / 2, first_out_pin, args[ARG_out_pin_count].u_int, first_in_pin, args[ARG_in_pin_count].u_int, first_set_pin, args[ARG_set_pin_count].u_int, first_sideset_pin, args[ARG_sideset_pin_count].u_int, args[ARG_exclusive_pin_use].u_bool, args[ARG_auto_pull].u_bool, pull_threshold, args[ARG_out_shift_right].u_bool, args[ARG_auto_push].u_bool, push_threshold, args[ARG_in_shift_right].u_bool); return MP_OBJ_FROM_PTR(self); } //| def deinit(self) -> None: //| """Turn off the state machine and release its resources.""" //| ... //| STATIC mp_obj_t rp2pio_statemachine_obj_deinit(mp_obj_t self_in) { rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in); common_hal_rp2pio_statemachine_deinit(self); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_deinit_obj, rp2pio_statemachine_obj_deinit); //| def __enter__(self) -> StateMachine: //| """No-op used by Context Managers. //| Provided by context manager helper.""" //| ... //| //| def __exit__(self) -> None: //| """Automatically deinitializes the hardware when exiting a context. See //| :ref:`lifetime-and-contextmanagers` for more info.""" //| ... //| STATIC mp_obj_t rp2pio_statemachine_obj___exit__(size_t n_args, const mp_obj_t *args) { (void)n_args; common_hal_rp2pio_statemachine_deinit(args[0]); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rp2pio_statemachine_obj___exit___obj, 4, 4, rp2pio_statemachine_obj___exit__); STATIC void check_for_deinit(rp2pio_statemachine_obj_t *self) { if (common_hal_rp2pio_statemachine_deinited(self)) { raise_deinited_error(); } } // // | def restart(self, *other_state_machines) -> None: // // | """Restarts this state machine and any others given. They must share // // | an underlying PIO. An exception will be raised otherwise.""" // // | ... // // | //| def write(self, buffer: ReadableBuffer, *, start: int = 0, end: Optional[int] = None) -> None: //| """Write the data contained in ``buffer`` to the state machine. If the buffer is empty, nothing happens. //| //| :param ~_typing.ReadableBuffer buffer: Write out the data in this buffer //| :param int start: Start of the slice of ``buffer`` to write out: ``buffer[start:end]`` //| :param int end: End of the slice; this index is not included. Defaults to ``len(buffer)``""" //| ... //| STATIC mp_obj_t rp2pio_statemachine_write(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_buffer, ARG_start, ARG_end }; static const mp_arg_t allowed_args[] = { { MP_QSTR_buffer, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} }, }; rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); check_for_deinit(self); mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_buffer_info_t bufinfo; mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_READ); int32_t start = args[ARG_start].u_int; size_t length = bufinfo.len; normalize_buffer_bounds(&start, args[ARG_end].u_int, &length); if (length == 0) { return mp_const_none; } bool ok = common_hal_rp2pio_statemachine_write(self, ((uint8_t*)bufinfo.buf) + start, length); if (mp_hal_is_interrupted()) { return mp_const_none; } if (!ok) { mp_raise_OSError(MP_EIO); } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(rp2pio_statemachine_write_obj, 2, rp2pio_statemachine_write); // // | def readinto(self, buffer: WriteableBuffer, *, start: int = 0, end: Optional[int] = None) -> None: // // | """Read into ``buffer``. If the number of bytes to read is 0, nothing happens. // // | // // | :param ~_typing.WriteableBuffer buffer: Read data into this buffer // // | :param int start: Start of the slice of ``buffer`` to read into: ``buffer[start:end]`` // // | :param int end: End of the slice; this index is not included. Defaults to ``len(buffer)`` // // | :param int write_value: Value to write while reading. (Usually ignored.)""" // // | ... // // | // STATIC mp_obj_t rp2pio_statemachine_readinto(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // enum { ARG_buffer, ARG_start, ARG_end, ARG_write_value }; // static const mp_arg_t allowed_args[] = { // { MP_QSTR_buffer, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, // { MP_QSTR_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, // { MP_QSTR_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} }, // { MP_QSTR_write_value,MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, // }; // rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); // check_for_deinit(self); // check_lock(self); // mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; // mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // mp_buffer_info_t bufinfo; // mp_get_buffer_raise(args[ARG_buffer].u_obj, &bufinfo, MP_BUFFER_WRITE); // int32_t start = args[ARG_start].u_int; // size_t length = bufinfo.len; // normalize_buffer_bounds(&start, args[ARG_end].u_int, &length); // if (length == 0) { // return mp_const_none; // } // bool ok = common_hal_rp2pio_statemachine_read(self, ((uint8_t*)bufinfo.buf) + start, length, args[ARG_write_value].u_int); // if (!ok) { // mp_raise_OSError(MP_EIO); // } // return mp_const_none; // } // MP_DEFINE_CONST_FUN_OBJ_KW(rp2pio_statemachine_readinto_obj, 2, rp2pio_statemachine_readinto); // //| def write_readinto(self, buffer_out: ReadableBuffer, buffer_in: WriteableBuffer, *, out_start: int = 0, out_end: Optional[int] = None, in_start: int = 0, in_end: Optional[int] = None) -> None: // //| """Write out the data in ``buffer_out`` while simultaneously reading data into ``buffer_in``. // //| The SPI object must be locked. // //| The lengths of the slices defined by ``buffer_out[out_start:out_end]`` and ``buffer_in[in_start:in_end]`` // //| must be equal. // //| If buffer slice lengths are both 0, nothing happens. // //| // //| :param ~_typing.ReadableBuffer buffer_out: Write out the data in this buffer // //| :param ~_typing.WriteableBuffer buffer_in: Read data into this buffer // //| :param int out_start: Start of the slice of buffer_out to write out: ``buffer_out[out_start:out_end]`` // //| :param int out_end: End of the slice; this index is not included. Defaults to ``len(buffer_out)`` // //| :param int in_start: Start of the slice of ``buffer_in`` to read into: ``buffer_in[in_start:in_end]`` // //| :param int in_end: End of the slice; this index is not included. Defaults to ``len(buffer_in)``""" // //| ... // //| // STATIC mp_obj_t rp2pio_statemachine_write_readinto(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // enum { ARG_buffer_out, ARG_buffer_in, ARG_out_start, ARG_out_end, ARG_in_start, ARG_in_end }; // static const mp_arg_t allowed_args[] = { // { MP_QSTR_buffer_out, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, // { MP_QSTR_buffer_in, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, // { MP_QSTR_out_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, // { MP_QSTR_out_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} }, // { MP_QSTR_in_start, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, // { MP_QSTR_in_end, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = INT_MAX} }, // }; // rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); // check_for_deinit(self); // check_lock(self); // mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; // mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // mp_buffer_info_t buf_out_info; // mp_get_buffer_raise(args[ARG_buffer_out].u_obj, &buf_out_info, MP_BUFFER_READ); // int32_t out_start = args[ARG_out_start].u_int; // size_t out_length = buf_out_info.len; // normalize_buffer_bounds(&out_start, args[ARG_out_end].u_int, &out_length); // mp_buffer_info_t buf_in_info; // mp_get_buffer_raise(args[ARG_buffer_in].u_obj, &buf_in_info, MP_BUFFER_WRITE); // int32_t in_start = args[ARG_in_start].u_int; // size_t in_length = buf_in_info.len; // normalize_buffer_bounds(&in_start, args[ARG_in_end].u_int, &in_length); // if (out_length != in_length) { // mp_raise_ValueError(translate("buffer slices must be of equal length")); // } // if (out_length == 0) { // return mp_const_none; // } // bool ok = common_hal_rp2pio_statemachine_transfer(self, // ((uint8_t*)buf_out_info.buf) + out_start, // ((uint8_t*)buf_in_info.buf) + in_start, // out_length); // if (!ok) { // mp_raise_OSError(MP_EIO); // } // return mp_const_none; // } // MP_DEFINE_CONST_FUN_OBJ_KW(rp2pio_statemachine_write_readinto_obj, 2, rp2pio_statemachine_write_readinto); //| frequency: int //| """The actual state machine frequency. This may not match the frequency requested //| due to internal limitations.""" //| STATIC mp_obj_t rp2pio_statemachine_obj_get_frequency(mp_obj_t self_in) { rp2pio_statemachine_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); return MP_OBJ_NEW_SMALL_INT(common_hal_rp2pio_statemachine_get_frequency(self)); } MP_DEFINE_CONST_FUN_OBJ_1(rp2pio_statemachine_get_frequency_obj, rp2pio_statemachine_obj_get_frequency); const mp_obj_property_t rp2pio_statemachine_frequency_obj = { .base.type = &mp_type_property, .proxy = {(mp_obj_t)&rp2pio_statemachine_get_frequency_obj, (mp_obj_t)&mp_const_none_obj, (mp_obj_t)&mp_const_none_obj}, }; STATIC const mp_rom_map_elem_t rp2pio_statemachine_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&rp2pio_statemachine_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR___enter__), MP_ROM_PTR(&default___enter___obj) }, { MP_ROM_QSTR(MP_QSTR___exit__), MP_ROM_PTR(&rp2pio_statemachine_obj___exit___obj) }, // { MP_ROM_QSTR(MP_QSTR_restart), MP_ROM_PTR(&rp2pio_statemachine_configure_obj) }, // { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&rp2pio_statemachine_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&rp2pio_statemachine_write_obj) }, // { MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&rp2pio_statemachine_write_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_frequency), MP_ROM_PTR(&rp2pio_statemachine_frequency_obj) } }; STATIC MP_DEFINE_CONST_DICT(rp2pio_statemachine_locals_dict, rp2pio_statemachine_locals_dict_table); const mp_obj_type_t rp2pio_statemachine_type = { { &mp_type_type }, .name = MP_QSTR_StateMachine, .make_new = rp2pio_statemachine_make_new, .locals_dict = (mp_obj_dict_t*)&rp2pio_statemachine_locals_dict, }; rp2pio_statemachine_obj_t *validate_obj_is_statemachine(mp_obj_t obj) { if (!MP_OBJ_IS_TYPE(obj, &rp2pio_statemachine_type)) { mp_raise_TypeError_varg(translate("Expected a %q"), rp2pio_statemachine_type.name); } return MP_OBJ_TO_PTR(obj); }