/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "mpconfig.h" #include "nlr.h" #include "misc.h" #include "qstr.h" #include "obj.h" #include "runtime0.h" #include "runtime.h" // Helpers for sequence types #define SWAP(type, var1, var2) { type t = var2; var2 = var1; var1 = t; } // Implements backend of sequence * integer operation. Assumes elements are // memory-adjacent in sequence. void mp_seq_multiply(const void *items, uint item_sz, uint len, uint times, void *dest) { for (int i = 0; i < times; i++) { uint copy_sz = item_sz * len; memcpy(dest, items, copy_sz); dest = (char*)dest + copy_sz; } } bool mp_seq_get_fast_slice_indexes(machine_uint_t len, mp_obj_t slice, machine_uint_t *begin, machine_uint_t *end) { machine_int_t start, stop, step; mp_obj_slice_get(slice, &start, &stop, &step); if (step != 1) { return false; } // Unlike subscription, out-of-bounds slice indexes are never error if (start < 0) { start = len + start; if (start < 0) { start = 0; } } else if (start > len) { start = len; } if (stop <= 0) { stop = len + stop; // CPython returns empty sequence in such case if (stop < 0) { stop = start; } } else if (stop > len) { stop = len; } *begin = start; *end = stop; return true; } // Special-case comparison function for sequences of bytes // Don't pass MP_BINARY_OP_NOT_EQUAL here bool mp_seq_cmp_bytes(int op, const byte *data1, uint len1, const byte *data2, uint len2) { if (op == MP_BINARY_OP_EQUAL && len1 != len2) { return false; } // Let's deal only with > & >= if (op == MP_BINARY_OP_LESS || op == MP_BINARY_OP_LESS_EQUAL) { SWAP(const byte*, data1, data2); SWAP(uint, len1, len2); if (op == MP_BINARY_OP_LESS) { op = MP_BINARY_OP_MORE; } else { op = MP_BINARY_OP_MORE_EQUAL; } } uint min_len = len1 < len2 ? len1 : len2; int res = memcmp(data1, data2, min_len); if (res < 0) { return false; } if (res > 0) { return true; } // If we had tie in the last element... // ... and we have lists of different lengths... if (len1 != len2) { if (len1 < len2) { // ... then longer list length wins (we deal only with >) return false; } } else if (op == MP_BINARY_OP_MORE) { // Otherwise, if we have strict relation, equality means failure return false; } return true; } // Special-case comparison function for sequences of mp_obj_t // Don't pass MP_BINARY_OP_NOT_EQUAL here bool mp_seq_cmp_objs(int op, const mp_obj_t *items1, uint len1, const mp_obj_t *items2, uint len2) { if (op == MP_BINARY_OP_EQUAL && len1 != len2) { return false; } // Let's deal only with > & >= if (op == MP_BINARY_OP_LESS || op == MP_BINARY_OP_LESS_EQUAL) { SWAP(const mp_obj_t *, items1, items2); SWAP(uint, len1, len2); if (op == MP_BINARY_OP_LESS) { op = MP_BINARY_OP_MORE; } else { op = MP_BINARY_OP_MORE_EQUAL; } } int len = len1 < len2 ? len1 : len2; for (int i = 0; i < len; i++) { // If current elements equal, can't decide anything - go on if (mp_obj_equal(items1[i], items2[i])) { continue; } // Othewise, if they are not equal, we can have final decision based on them if (op == MP_BINARY_OP_EQUAL) { // In particular, if we are checking for equality, here're the answer return false; } // Otherwise, application of relation op gives the answer return (mp_binary_op(op, items1[i], items2[i]) == mp_const_true); } // If we had tie in the last element... // ... and we have lists of different lengths... if (len1 != len2) { if (len1 < len2) { // ... then longer list length wins (we deal only with >) return false; } } else if (op == MP_BINARY_OP_MORE) { // Otherwise, if we have strict relation, sequence equality means failure return false; } return true; } // Special-case of index() which searches for mp_obj_t mp_obj_t mp_seq_index_obj(const mp_obj_t *items, uint len, uint n_args, const mp_obj_t *args) { mp_obj_type_t *type = mp_obj_get_type(args[0]); mp_obj_t *value = args[1]; uint start = 0; uint stop = len; if (n_args >= 3) { start = mp_get_index(type, len, args[2], true); if (n_args >= 4) { stop = mp_get_index(type, len, args[3], true); } } for (machine_uint_t i = start; i < stop; i++) { if (mp_obj_equal(items[i], value)) { // Common sense says this cannot overflow small int return MP_OBJ_NEW_SMALL_INT(i); } } nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "object not in sequence")); } mp_obj_t mp_seq_count_obj(const mp_obj_t *items, uint len, mp_obj_t value) { machine_uint_t count = 0; for (uint i = 0; i < len; i++) { if (mp_obj_equal(items[i], value)) { count++; } } // Common sense says this cannot overflow small int return MP_OBJ_NEW_SMALL_INT(count); }