/* * This file is part of the MicroPython project, http://micropython.org/ * * This file provides functions for configuring the clocks. * * The MIT License (MIT) * * Copyright (c) 2022 Robert Hammelrath * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "py/runtime.h" #include "py/mphal.h" #include "samd_soc.h" static uint32_t cpu_freq = CPU_FREQ; static uint32_t peripheral_freq = DFLL48M_FREQ; static uint32_t dfll48m_calibration; int sercom_gclk_id[] = { SERCOM0_GCLK_ID_CORE, SERCOM1_GCLK_ID_CORE, SERCOM2_GCLK_ID_CORE, SERCOM3_GCLK_ID_CORE, SERCOM4_GCLK_ID_CORE, SERCOM5_GCLK_ID_CORE, #if defined(SERCOM7_GCLK_ID_CORE) SERCOM6_GCLK_ID_CORE, SERCOM7_GCLK_ID_CORE, #endif }; uint32_t get_cpu_freq(void) { return cpu_freq; } uint32_t get_peripheral_freq(void) { return peripheral_freq; } void set_cpu_freq(uint32_t cpu_freq_arg) { // Setup GCLK0 for 48MHz as default state to keep the MCU running during config change. GCLK->GENCTRL[0].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL; while (GCLK->SYNCBUSY.bit.GENCTRL0) { } // Setup DPLL0 for 120 MHz // first: disable DPLL0 in case it is running OSCCTRL->Dpll[0].DPLLCTRLA.bit.ENABLE = 0; while (OSCCTRL->Dpll[0].DPLLSYNCBUSY.bit.ENABLE == 1) { } if (cpu_freq_arg > DFLL48M_FREQ) { cpu_freq = cpu_freq_arg; peripheral_freq = DFLL48M_FREQ; // Now configure the registers OSCCTRL->Dpll[0].DPLLCTRLB.reg = OSCCTRL_DPLLCTRLB_DIV(1) | OSCCTRL_DPLLCTRLB_LBYPASS | OSCCTRL_DPLLCTRLB_REFCLK(0) | OSCCTRL_DPLLCTRLB_WUF | OSCCTRL_DPLLCTRLB_FILTER(0x01); uint32_t div = cpu_freq / DPLLx_REF_FREQ; uint32_t frac = (cpu_freq - div * DPLLx_REF_FREQ) / (DPLLx_REF_FREQ / 32); OSCCTRL->Dpll[0].DPLLRATIO.reg = (frac << 16) + div - 1; // enable it again OSCCTRL->Dpll[0].DPLLCTRLA.reg = OSCCTRL_DPLLCTRLA_ENABLE | OSCCTRL_DPLLCTRLA_RUNSTDBY; // Per errata 2.13.1 while (!(OSCCTRL->Dpll[0].DPLLSTATUS.bit.CLKRDY == 1)) { } // Setup GCLK0 for DPLL0 output (48 or 48-200MHz) GCLK->GENCTRL[0].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DPLL0; while (GCLK->SYNCBUSY.bit.GENCTRL0) { } // Set GCLK 2 back to 48 MHz GCLK->GENCTRL[2].reg = GCLK_GENCTRL_DIV(1) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL; while (GCLK->SYNCBUSY.bit.GENCTRL2) { } } else { int div = DFLL48M_FREQ / cpu_freq_arg; // Setup GCLK1 for the low freq GCLK->GENCTRL[2].reg = GCLK_GENCTRL_DIV(div) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL; while (GCLK->SYNCBUSY.bit.GENCTRL2) { } GCLK->GENCTRL[0].reg = GCLK_GENCTRL_DIV(div) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL; while (GCLK->SYNCBUSY.bit.GENCTRL0) { } peripheral_freq = DFLL48M_FREQ / div; cpu_freq = DFLL48M_FREQ / div; } if (cpu_freq >= 8000000) { // Setup GCLK5 for DFLL48M output (48 MHz) GCLK->GENCTRL[5].reg = GCLK_GENCTRL_DIV(1) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL; while (GCLK->SYNCBUSY.bit.GENCTRL5) { } } else { // Setup GCLK5 off if CPU Clk < 8 MHz GCLK->GENCTRL[5].reg = 0; while (GCLK->SYNCBUSY.bit.GENCTRL5) { } } SysTick_Config(cpu_freq / 1000); } void check_usb_recovery_mode(void) { #if !MICROPY_HW_XOSC32K mp_hal_delay_ms(500); // Check USB status. If not connected, switch DFLL48M back to open loop if (USB->DEVICE.DeviceEndpoint[0].EPCFG.reg == 0) { // as per Errata 2.8.3 OSCCTRL->DFLLMUL.reg = 0; while (OSCCTRL->DFLLSYNC.bit.DFLLMUL == 1) { } // Set the mode to open loop mode OSCCTRL->DFLLCTRLB.reg = 0; while (OSCCTRL->DFLLSYNC.bit.DFLLCTRLB == 1) { } OSCCTRL->DFLLCTRLA.reg = OSCCTRL_DFLLCTRLA_RUNSTDBY | OSCCTRL_DFLLCTRLA_ENABLE; while (OSCCTRL->DFLLSYNC.bit.ENABLE == 1) { } OSCCTRL->DFLLVAL.reg = dfll48m_calibration; // Reload DFLLVAL register while (OSCCTRL->DFLLSYNC.bit.DFLLVAL == 1) { } // Set the mode to open loop mode OSCCTRL->DFLLCTRLB.reg = 0; while (OSCCTRL->DFLLSYNC.bit.DFLLCTRLB == 1) { } } #endif // MICROPY_HW_XOSC32K } // Purpose of the #defines for the clock configuration. // // The CPU clock is generated by DPLL0, which takes 32768 Hz as reference frequency, // supplied through GCLK1. // // DFLL48M is used for the peripheral clock, e.g. for PWM, UART, SPI, I2C. // DFLL48M is either free running, or controlled by the 32kHz crystal, or // Synchronized with the USB clock. // // GCLK1 takes it's input either from the 32kHz crystal, the internal low power // RC oscillator or from DFLL48M. // // #define MICROPY_HW_XOSC32K (0 | 1) // // If MICROPY_HW_XOSC32K = 1, the 32kHz crystal is used for the DFLL48M oscillator // and for GCLK1, feeding the CPU, unless MICROPY_HW_MCU_OSC32KULP is set. // In that case GCLK1 (and the CPU clock) is driven by the 32K Low power oscillator. // The reason for offering this option is a design flaw of the Adafruit // Feather boards, where the RGB Led and Debug signals interfere with the // crystal, causing the CPU to fail if it is driven by the crystal. The // peripheral devices are affected as well, but continue it's operation. // // If MICROPY_HW_XOSC32K = 0, the 32kHz signal for GCLK1 (and the CPU) is // created by dividing the 48MHz clock of DFLL48M. // // If MICROPY_HW_DFLL_USB_SYNC = 0, the DFLL48M oscillator is free running using // the pre-configured trim values. In that mode, the peripheral clock is // not exactly 48Mhz and has a substantional temperature drift. // // If MICROPY_HW_DFLL_USB_SYNC = 1, the DFLL48 is synchronized with the 1 kHz USB sync // signal. If after boot there is no USB sync withing 500ms, the configuratuion falls // back to a free running 48Mhz oscillator. // // In all modes, the 48MHz signal has a substantial jitter, largest when // MICROPY_HW_DFLL_USB_SYNC is active. That is caused by the repective // reference frequencies of 32kHz or 1 kHz being low. That affects most // PWM. Std Dev at 1kHz 0.156Hz (w. Crystal) up to 0.4 Hz (with USB sync). // // If none of the mentioned defines is set, the device uses the internal oscillators. void init_clocks(uint32_t cpu_freq) { dfll48m_calibration = 0; // please the compiler // SAMD51 clock settings // GCLK0: 48MHz from DFLL48M or 48 - 200 MHz from DPLL0 (SAMD51) // GCLK1: 32768 Hz from 32KULP or DFLL48M // GCLK2: 8-48MHz from DFLL48M for Peripheral devices // GCLK3: 8Mhz for the us-counter (TC0/TC1) // GCLK4: 32kHz from crystal, if present // GCLK5: 48MHz from DFLL48M for USB // DPLL0: 48 - 200 MHz // Steps to set up clocks: // Reset Clocks // Switch GCLK0 to DFLL 48MHz // Setup 32768 Hz source and DFLL48M in closed loop mode, if a crystal is present. // Setup GCLK1 to the DPLL0 Reference freq. of 32768 Hz // Setup GCLK1 to drive peripheral channel 1 // Setup DPLL0 to 120MHz // Setup GCLK0 to 120MHz // Setup GCLK2 to 48MHz for Peripherals // Setup GCLK3 to 8MHz for TC0/TC1 // Setup GCLK4 to 32kHz crystal, if present // Setup GCLK5 to 48 MHz // Setup GCLK0 for 48MHz as default state to keep the MCU running during config change. GCLK->GENCTRL[0].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL; while (GCLK->SYNCBUSY.bit.GENCTRL0) { } #if MICROPY_HW_XOSC32K // OSCILLATOR CONTROL // Enable the clock for RTC OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_XOSC1K; // Setup XOSC32K OSC32KCTRL->INTFLAG.reg = OSC32KCTRL_INTFLAG_XOSC32KRDY | OSC32KCTRL_INTFLAG_XOSC32KFAIL; OSC32KCTRL->CFDCTRL.bit.CFDEN = 1; // Fall back to internal Osc on crystal fail OSC32KCTRL->XOSC32K.reg = OSC32KCTRL_XOSC32K_CGM_HS | OSC32KCTRL_XOSC32K_XTALEN | OSC32KCTRL_XOSC32K_EN32K | OSC32KCTRL_XOSC32K_EN1K | OSC32KCTRL_XOSC32K_RUNSTDBY | OSC32KCTRL_XOSC32K_STARTUP(4) | OSC32KCTRL_XOSC32K_ENABLE; // make sure osc32kcrtl is ready while (OSC32KCTRL->STATUS.bit.XOSC32KRDY == 0) { } #if MICROPY_HW_MCU_OSC32KULP // Setup GCLK1 for 32kHz ULP GCLK->GENCTRL[1].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_OSCULP32K; #else // Setup GCLK1 for 32kHz crystal GCLK->GENCTRL[1].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_XOSC32K; #endif while (GCLK->SYNCBUSY.bit.GENCTRL1) { } // Setup GCLK4 for 32kHz crystal GCLK->GENCTRL[4].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_XOSC32K; while (GCLK->SYNCBUSY.bit.GENCTRL4) { } // Set-up the DFLL48M in closed loop mode with input from the 32kHz crystal // Step 1: Peripheral channel 0 is driven by GCLK4 and it feeds DFLL48M GCLK->PCHCTRL[0].reg = GCLK_PCHCTRL_GEN_GCLK4 | GCLK_PCHCTRL_CHEN; while (GCLK->PCHCTRL[0].bit.CHEN == 0) { } // Step 2: Set the multiplication values. The offset of 16384 to the freq is for rounding. OSCCTRL->DFLLMUL.reg = OSCCTRL_DFLLMUL_MUL((DFLL48M_FREQ + DPLLx_REF_FREQ / 2) / DPLLx_REF_FREQ) | OSCCTRL_DFLLMUL_FSTEP(1) | OSCCTRL_DFLLMUL_CSTEP(1); while (OSCCTRL->DFLLSYNC.bit.DFLLMUL == 1) { } // Step 3: Set the mode to closed loop OSCCTRL->DFLLCTRLB.reg = OSCCTRL_DFLLCTRLB_BPLCKC | OSCCTRL_DFLLCTRLB_STABLE | OSCCTRL_DFLLCTRLB_MODE; while (OSCCTRL->DFLLSYNC.bit.DFLLCTRLB == 1) { } // Wait for lock fine while (OSCCTRL->STATUS.bit.DFLLLCKF == 0) { } // Step 4: Start the DFLL. OSCCTRL->DFLLCTRLA.reg = OSCCTRL_DFLLCTRLA_RUNSTDBY | OSCCTRL_DFLLCTRLA_ENABLE; while (OSCCTRL->DFLLSYNC.bit.ENABLE == 1) { } #else // MICROPY_HW_XOSC32K // Enable the clock for RTC OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_ULP1K; // Derive GCLK1 from DFLL48M at DPLL0_REF_FREQ as defined in mpconfigboard.h (e.g. 32768 Hz) GCLK->GENCTRL[1].reg = ((DFLL48M_FREQ + DPLLx_REF_FREQ / 2) / DPLLx_REF_FREQ) << GCLK_GENCTRL_DIV_Pos | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL; while (GCLK->SYNCBUSY.bit.GENCTRL1) { } OSCCTRL->DFLLCTRLA.bit.RUNSTDBY = 1; OSCCTRL->DFLLCTRLA.bit.ONDEMAND = 0; OSCCTRL->DFLLCTRLA.bit.ENABLE = 1; while (OSCCTRL->DFLLSYNC.bit.ENABLE == 1) { } #if MICROPY_HW_DFLL_USB_SYNC // Configure the DFLL48M for USB clock recovery. // Will have to switch back if no USB dfll48m_calibration = OSCCTRL->DFLLVAL.reg; // Set the Multiplication factor. OSCCTRL->DFLLMUL.reg = OSCCTRL_DFLLMUL_MUL(48000) | OSCCTRL_DFLLMUL_FSTEP(1) | OSCCTRL_DFLLMUL_CSTEP(1); while (OSCCTRL->DFLLSYNC.bit.DFLLMUL == 1) { } // Set the mode to closed loop USB Recovery OSCCTRL->DFLLCTRLB.reg = OSCCTRL_DFLLCTRLB_USBCRM | OSCCTRL_DFLLCTRLB_CCDIS | OSCCTRL_DFLLCTRLB_MODE; while (OSCCTRL->DFLLSYNC.bit.DFLLCTRLB == 1) { } #endif #endif // MICROPY_HW_XOSC32K // Peripheral channel 1 is driven by GCLK1 and it feeds DPLL0 GCLK->PCHCTRL[1].reg = GCLK_PCHCTRL_GEN_GCLK1 | GCLK_PCHCTRL_CHEN; while (GCLK->PCHCTRL[1].bit.CHEN == 0) { } set_cpu_freq(cpu_freq); peripheral_freq = DFLL48M_FREQ; // To be changed if CPU_FREQ < 48M // Setup GCLK2 for DFLL48M output (48 MHz), may be scaled down later by calls to set_cpu_freq GCLK->GENCTRL[2].reg = GCLK_GENCTRL_DIV(1) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL; while (GCLK->SYNCBUSY.bit.GENCTRL2) { } // Setup GCLK3 for 8MHz, Used for TC0/1 counter GCLK->GENCTRL[3].reg = GCLK_GENCTRL_DIV(6) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL; while (GCLK->SYNCBUSY.bit.GENCTRL3) { } } void enable_sercom_clock(int id) { GCLK->PCHCTRL[sercom_gclk_id[id]].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN_GCLK2; // no easy way to set the clocks, except enabling all of them switch (id) { case 0: MCLK->APBAMASK.bit.SERCOM0_ = 1; break; case 1: MCLK->APBAMASK.bit.SERCOM1_ = 1; break; case 2: MCLK->APBBMASK.bit.SERCOM2_ = 1; break; case 3: MCLK->APBBMASK.bit.SERCOM3_ = 1; break; case 4: MCLK->APBDMASK.bit.SERCOM4_ = 1; break; case 5: MCLK->APBDMASK.bit.SERCOM5_ = 1; break; #ifdef SERCOM7_GCLK_ID_CORE case 6: MCLK->APBDMASK.bit.SERCOM6_ = 1; break; case 7: MCLK->APBDMASK.bit.SERCOM7_ = 1; break; #endif } }