/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020 Scott Shawcroft for Adafruit Industries LLC * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/microcontroller/__init__.h" #include "shared-bindings/busio/UART.h" #include "driver/uart.h" #include "mpconfigport.h" #include "lib/utils/interrupt_char.h" #include "py/gc.h" #include "py/mperrno.h" #include "py/runtime.h" #include "py/stream.h" #include "supervisor/shared/translate.h" #include "supervisor/shared/tick.h" void uart_reset(void) { for (uart_port_t num = 0; num < UART_NUM_MAX; num++) { // Ignore the UART used by the IDF. #ifdef CONFIG_CONSOLE_UART_NUM if (num == CONFIG_CONSOLE_UART_NUM) { continue; } #endif if (uart_is_driver_installed(num)) { uart_driver_delete(num); } } } void common_hal_busio_uart_construct(busio_uart_obj_t *self, const mcu_pin_obj_t * tx, const mcu_pin_obj_t * rx, const mcu_pin_obj_t * rts, const mcu_pin_obj_t * cts, const mcu_pin_obj_t * rs485_dir, bool rs485_invert, uint32_t baudrate, uint8_t bits, busio_uart_parity_t parity, uint8_t stop, mp_float_t timeout, uint16_t receiver_buffer_size, byte* receiver_buffer, bool sigint_enabled) { if (bits > 8) { mp_raise_NotImplementedError(translate("bytes > 8 bits not supported")); } bool have_tx = tx != NULL; bool have_rx = rx != NULL; bool have_rts = rts != NULL; bool have_cts = cts != NULL; bool have_rs485_dir = rs485_dir != NULL; if (!have_tx && !have_rx) { mp_raise_ValueError(translate("tx and rx cannot both be None")); } // Filter for sane settings for RS485 if (have_rs485_dir) { if (have_rts || have_cts) { mp_raise_ValueError(translate("Cannot specify RTS or CTS in RS485 mode")); } } else if (rs485_invert) { mp_raise_ValueError(translate("RS485 inversion specified when not in RS485 mode")); } self->timeout_ms = timeout * 1000; self->uart_num = UART_NUM_MAX; for (uart_port_t num = 0; num < UART_NUM_MAX; num++) { if (!uart_is_driver_installed(num)) { self->uart_num = num; } } if (self->uart_num == UART_NUM_MAX) { mp_raise_ValueError(translate("All UART peripherals are in use")); } uart_mode_t mode = UART_MODE_UART; uart_hw_flowcontrol_t flow_control = UART_HW_FLOWCTRL_DISABLE; if (have_rs485_dir) { mode = UART_MODE_RS485_HALF_DUPLEX; if (!rs485_invert) { uart_set_line_inverse(self->uart_num, UART_SIGNAL_DTR_INV); } } else if (have_rts && have_cts) { flow_control = UART_HW_FLOWCTRL_CTS_RTS; } else if (have_rts) { flow_control = UART_HW_FLOWCTRL_RTS; } else if (have_rts) { flow_control = UART_HW_FLOWCTRL_CTS; } if (receiver_buffer_size <= UART_FIFO_LEN) { receiver_buffer_size = UART_FIFO_LEN + 8; } uint8_t rx_threshold = UART_FIFO_LEN - 8; // Install the driver before we change the settings. if (uart_driver_install(self->uart_num, receiver_buffer_size, 0, 0, NULL, 0) != ESP_OK || uart_set_mode(self->uart_num, mode) != ESP_OK) { mp_raise_ValueError(translate("Could not initialize UART")); } uart_set_hw_flow_ctrl(self->uart_num, flow_control, rx_threshold); // Set baud rate common_hal_busio_uart_set_baudrate(self, baudrate); uart_word_length_t word_length = UART_DATA_8_BITS; switch (bits) { // Shared bindings prevents data < 7 bits. // case 5: // word_length = UART_DATA_5_BITS; // break; // case 6: // word_length = UART_DATA_6_BITS; // break; case 7: word_length = UART_DATA_7_BITS; break; case 8: word_length = UART_DATA_8_BITS; break; default: // Won't hit this because shared-bindings limits to 7-9 bits. We error on 9 above. break; } uart_set_word_length(self->uart_num, word_length); uart_parity_t parity_mode = UART_PARITY_DISABLE; switch (parity) { case BUSIO_UART_PARITY_NONE: parity_mode = UART_PARITY_DISABLE; break; case BUSIO_UART_PARITY_EVEN: parity_mode = UART_PARITY_EVEN; break; case BUSIO_UART_PARITY_ODD: parity_mode = UART_PARITY_ODD; break; default: // Won't reach here because the input is an enum that is completely handled. break; } uart_set_parity(self->uart_num, parity_mode); // Stop is 1 or 2 always. uart_stop_bits_t stop_bits= UART_STOP_BITS_1; if (stop == 2) { stop_bits = UART_STOP_BITS_2; } uart_set_stop_bits(self->uart_num, stop_bits); self->tx_pin = NULL; self->rx_pin = NULL; self->rts_pin = NULL; self->cts_pin = NULL; int tx_num = -1; int rx_num = -1; int rts_num = -1; int cts_num = -1; if (have_tx) { claim_pin(tx); self->tx_pin = tx; tx_num = tx->number; } if (have_rx) { claim_pin(rx); self->rx_pin = rx; rx_num = rx->number; } if (have_rts) { claim_pin(rts); self->rts_pin = rts; rts_num = rts->number; } if (have_cts) { claim_pin(cts); self->cts_pin = cts; cts_num = cts->number; } if (have_rs485_dir) { claim_pin(rs485_dir); // RTS is used for RS485 direction. self->rts_pin = rs485_dir; rts_num = rs485_dir->number; } if (uart_set_pin(self->uart_num, tx_num, rx_num, rts_num, cts_num) != ESP_OK) { mp_raise_ValueError(translate("Invalid pins")); } } bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) { return self->rx_pin == NULL && self->tx_pin == NULL; } void common_hal_busio_uart_deinit(busio_uart_obj_t *self) { if (common_hal_busio_uart_deinited(self)) { return; } uart_driver_delete(self->uart_num); common_hal_reset_pin(self->rx_pin); common_hal_reset_pin(self->tx_pin); common_hal_reset_pin(self->rts_pin); common_hal_reset_pin(self->cts_pin); self->rx_pin = NULL; self->tx_pin = NULL; self->cts_pin = NULL; self->rts_pin = NULL; } // Read characters. size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) { if (self->rx_pin == NULL) { mp_raise_ValueError(translate("No RX pin")); } if (len == 0) { // Nothing to read. return 0; } size_t total_read = 0; uint64_t start_ticks = supervisor_ticks_ms64(); // Busy-wait until timeout or until we've read enough chars. while (supervisor_ticks_ms64() - start_ticks <= self->timeout_ms) { // Read as many chars as we can right now, up to len. size_t num_read = uart_read_bytes(self->uart_num, data, len, 0); // Advance pointer in data buffer, and decrease how many chars left to read. data += num_read; len -= num_read; total_read += num_read; if (len == 0) { // Don't need to read any more: data buf is full. break; } if (num_read > 0) { // Reset the timeout on every character read. start_ticks = supervisor_ticks_ms64(); } RUN_BACKGROUND_TASKS; // Allow user to break out of a timeout with a KeyboardInterrupt. if (mp_hal_is_interrupted()) { break; } // If we are zero timeout, make sure we don't loop again (in the event // we read in under 1ms) if (self->timeout_ms == 0) { break; } } if (total_read == 0) { *errcode = EAGAIN; return MP_STREAM_ERROR; } return total_read; } // Write characters. size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) { if (self->tx_pin == NULL) { mp_raise_ValueError(translate("No TX pin")); } while (len > 0) { int count = uart_tx_chars(self->uart_num, (const char*) data, len); if (count < 0) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } len -= count; data += count; RUN_BACKGROUND_TASKS; } while (uart_wait_tx_done(self->uart_num, 0) == ESP_ERR_TIMEOUT) { RUN_BACKGROUND_TASKS; } return len; } uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) { uint32_t baudrate; uart_get_baudrate(self->uart_num, &baudrate); return baudrate; } void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) { if (baudrate > UART_BITRATE_MAX || uart_set_baudrate(self->uart_num, baudrate) != ESP_OK) { mp_raise_ValueError(translate("Unsupported baudrate")); } } mp_float_t common_hal_busio_uart_get_timeout(busio_uart_obj_t *self) { return (mp_float_t) (self->timeout_ms / 1000.0f); } void common_hal_busio_uart_set_timeout(busio_uart_obj_t *self, mp_float_t timeout) { self->timeout_ms = timeout * 1000; } uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) { size_t count; uart_get_buffered_data_len(self->uart_num, &count); return count; } void common_hal_busio_uart_clear_rx_buffer(busio_uart_obj_t *self) { uart_flush(self->uart_num); } // True if there are no characters still to be written. bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) { if (self->tx_pin == NULL) { return false; } return uart_wait_tx_done(self->uart_num, 0) != ESP_ERR_TIMEOUT; }