/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2020 Lucian Copeland for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "supervisor/internal_flash.h" #include #include #include "extmod/vfs.h" #include "extmod/vfs_fat.h" #include "py/mphal.h" #include "py/obj.h" #include "py/runtime.h" #include "lib/oofatfs/ff.h" #include "supervisor/flash.h" #include "supervisor/shared/safe_mode.h" #include STM32_HAL_H typedef struct { uint32_t base_address; uint32_t sector_size; uint32_t sector_count; } flash_layout_t; /*------------------------------------------------------------------*/ /* Internal Flash API *------------------------------------------------------------------*/ #if defined(STM32F4) STATIC const flash_layout_t flash_layout[] = { { 0x08000000, 0x04000, 4 }, { 0x08010000, 0x10000, 1 }, { 0x08020000, 0x20000, 3 }, #if defined(FLASH_SECTOR_8) { 0x08080000, 0x20000, 4 }, #endif #if defined(FLASH_SECTOR_12) { 0x08100000, 0x04000, 4 }, { 0x08110000, 0x10000, 1 }, { 0x08120000, 0x20000, 7 }, #endif }; STATIC uint8_t _flash_cache[0x4000] __attribute__((aligned(4))); #elif defined(STM32F7) // FLASH_FLAG_PGSERR (Programming Sequence Error) was renamed to // FLASH_FLAG_ERSERR (Erasing Sequence Error) in STM32F7 #define FLASH_FLAG_PGSERR FLASH_FLAG_ERSERR #if defined(STM32F722xx) || defined(STM32F723xx) || defined(STM32F732xx) || defined(STM32F733xx) static const flash_layout_t flash_layout[] = { { 0x08000000, 0x04000, 4 }, { 0x08010000, 0x10000, 1 }, { 0x08020000, 0x20000, 3 }, }; STATIC uint8_t _flash_cache[0x4000] __attribute__((aligned(4))); #else static const flash_layout_t flash_layout[] = { { 0x08000000, 0x08000, 4 }, { 0x08020000, 0x20000, 1 }, { 0x08040000, 0x40000, 3 }, }; STATIC uint8_t _flash_cache[0x8000] __attribute__((aligned(4))); #endif #elif defined(STM32H7) STATIC const flash_layout_t flash_layout[] = { { 0x08000000, 0x20000, 16 }, }; STATIC uint8_t _flash_cache[0x20000] __attribute__((aligned(4))); #else #error Unsupported processor #endif #define NO_CACHE 0xffffffff #define MAX_CACHE 0x4000 STATIC uint32_t _cache_flash_addr = NO_CACHE; #if defined(STM32H7) // get the bank of a given flash address STATIC uint32_t get_bank(uint32_t addr) { if (READ_BIT(FLASH->OPTCR, FLASH_OPTCR_SWAP_BANK) == 0) { // no bank swap if (addr < (FLASH_BASE + FLASH_BANK_SIZE)) { return FLASH_BANK_1; } else { return FLASH_BANK_2; } } else { // bank swap if (addr < (FLASH_BASE + FLASH_BANK_SIZE)) { return FLASH_BANK_2; } else { return FLASH_BANK_1; } } } #endif // Return the sector of a given flash address. uint32_t flash_get_sector_info(uint32_t addr, uint32_t *start_addr, uint32_t *size) { if (addr >= flash_layout[0].base_address) { uint32_t sector_index = 0; for (uint8_t i = 0; i < MP_ARRAY_SIZE(flash_layout); ++i) { for (uint8_t j = 0; j < flash_layout[i].sector_count; ++j) { uint32_t sector_start_next = flash_layout[i].base_address + (j + 1) * flash_layout[i].sector_size; if (addr < sector_start_next) { if (start_addr != NULL) { *start_addr = flash_layout[i].base_address + j * flash_layout[i].sector_size; } if (size != NULL) { *size = flash_layout[i].sector_size; } return sector_index; } ++sector_index; } } } return 0; } void supervisor_flash_init(void) { } uint32_t supervisor_flash_get_block_size(void) { return FILESYSTEM_BLOCK_SIZE; } uint32_t supervisor_flash_get_block_count(void) { return INTERNAL_FLASH_FILESYSTEM_NUM_BLOCKS; } void port_internal_flash_flush(void) { if (_cache_flash_addr == NO_CACHE) { return; } #if defined(STM32H7) __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS_BANK1 | FLASH_FLAG_ALL_ERRORS_BANK2); #else __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR); #endif // set up for erase FLASH_EraseInitTypeDef EraseInitStruct; EraseInitStruct.TypeErase = TYPEERASE_SECTORS; EraseInitStruct.VoltageRange = VOLTAGE_RANGE_3; // voltage range needs to be 2.7V to 3.6V // get the sector information uint32_t sector_size; uint32_t sector_start_addr = 0xffffffff; #if defined(STM32H7) EraseInitStruct.Banks = get_bank(_cache_flash_addr); #endif EraseInitStruct.Sector = flash_get_sector_info(_cache_flash_addr, §or_start_addr, §or_size); EraseInitStruct.NbSectors = 1; if (sector_size > sizeof(_flash_cache) || sector_start_addr == 0xffffffff) { reset_into_safe_mode(FLASH_WRITE_FAIL); } // Skip if data is the same if (memcmp(_flash_cache, (void *)_cache_flash_addr, sector_size) != 0) { // unlock flash HAL_FLASH_Unlock(); // erase the sector uint32_t SectorError = 0; if (HAL_FLASHEx_Erase(&EraseInitStruct, &SectorError) != HAL_OK) { // error occurred during sector erase HAL_FLASH_Lock(); // lock the flash reset_into_safe_mode(FLASH_WRITE_FAIL); } uint32_t *cache_addr = (uint32_t *)_flash_cache; #if defined(STM32H7) for (uint32_t i = 0; i < (sector_size / 32); i++) { // Note that the STM32H7 HAL interface differs by taking an address, not 64 bit data if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_FLASHWORD, sector_start_addr, (uint32_t)cache_addr) != HAL_OK) { // error occurred during flash write HAL_FLASH_Lock(); // lock the flash reset_into_safe_mode(FLASH_WRITE_FAIL); } // RAM memory is by word (4 byte), but flash memory is by byte cache_addr += 8; sector_start_addr += 32; } #else // STM32F4 // program the flash word by word for (uint32_t i = 0; i < sector_size / 4; i++) { if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, sector_start_addr, (uint64_t)*cache_addr) != HAL_OK) { // error occurred during flash write HAL_FLASH_Lock(); // lock the flash reset_into_safe_mode(FLASH_WRITE_FAIL); } // RAM memory is by word (4 byte), but flash memory is by byte cache_addr += 1; sector_start_addr += 4; } #endif // lock the flash HAL_FLASH_Lock(); } } static uint32_t convert_block_to_flash_addr(uint32_t block) { if (0 <= block && block < INTERNAL_FLASH_FILESYSTEM_NUM_BLOCKS) { // a block in partition 1 return INTERNAL_FLASH_FILESYSTEM_START_ADDR + block * FILESYSTEM_BLOCK_SIZE; } // bad block return -1; } mp_uint_t supervisor_flash_read_blocks(uint8_t *dest, uint32_t block, uint32_t num_blocks) { int32_t src = convert_block_to_flash_addr(block); if (src == -1) { // bad block number return false; } // Determine whether the read is contained within the sector uint32_t sector_size; uint32_t sector_start_addr; flash_get_sector_info(src, §or_start_addr, §or_size); // Count how many blocks are left in the sector uint32_t count = (sector_size - (src - sector_start_addr)) / FILESYSTEM_BLOCK_SIZE; count = MIN(num_blocks, count); if (count < num_blocks && _cache_flash_addr == sector_start_addr) { // Read is contained in the cache, so just read cache memcpy(dest, (_flash_cache + (src - sector_start_addr)), FILESYSTEM_BLOCK_SIZE * num_blocks); } else { // The read spans multiple sectors or is in another sector // Must write out anything in cache before trying to read. supervisor_flash_flush(); memcpy(dest, (uint8_t *)src, FILESYSTEM_BLOCK_SIZE * num_blocks); } return 0; // success } mp_uint_t supervisor_flash_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) { while (num_blocks) { int32_t dest = convert_block_to_flash_addr(block_num); if (dest == -1) { // bad block number return false; } // unlock flash HAL_FLASH_Unlock(); uint32_t sector_size; uint32_t sector_start_addr; flash_get_sector_info(dest, §or_start_addr, §or_size); // Fail for any sector outside what's supported by the cache if (sector_size > sizeof(_flash_cache)) { reset_into_safe_mode(FLASH_WRITE_FAIL); } // Find how many blocks are left in the sector uint32_t count = (sector_size - (dest - sector_start_addr)) / FILESYSTEM_BLOCK_SIZE; count = MIN(num_blocks, count); if (_cache_flash_addr != sector_start_addr) { // Write out anything in cache before overwriting it. supervisor_flash_flush(); _cache_flash_addr = sector_start_addr; // Copy the current contents of the entire page into the cache. memcpy(_flash_cache, (void *)sector_start_addr, sector_size); } // Overwrite part or all of the sector cache with the src data. memcpy(_flash_cache + (dest - sector_start_addr), src, count * FILESYSTEM_BLOCK_SIZE); // adjust for next run block_num += count; src += count * FILESYSTEM_BLOCK_SIZE; num_blocks -= count; } return 0; // success } void supervisor_flash_release_cache(void) { }