#include #include #include "stm32f4xx_hal.h" #include "nlr.h" #include "misc.h" #include "mpconfig.h" #include "qstr.h" #include "parse.h" #include "obj.h" #include "map.h" #include "runtime.h" #include "dac.h" TIM_HandleTypeDef TIM6_Handle; STATIC DAC_HandleTypeDef DAC_Handle; void dac_init(void) { DAC_Handle.Instance = DAC; DAC_Handle.State = HAL_DAC_STATE_RESET; HAL_DAC_Init(&DAC_Handle); } STATIC void TIM6_Config(uint freq) { // TIM6 clock enable __TIM6_CLK_ENABLE(); // Compute the prescaler value so TIM6 triggers at freq-Hz uint16_t period = (uint16_t) ((SystemCoreClock / 2) / freq) - 1; // time base clock configuration TIM6_Handle.Instance = TIM6; TIM6_Handle.Init.Period = period; TIM6_Handle.Init.Prescaler = 0; // timer runs at SystemCoreClock / 2 TIM6_Handle.Init.ClockDivision = 0; // unused for TIM6 TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6 HAL_TIM_Base_Init(&TIM6_Handle); // TIM6 TRGO selection TIM_MasterConfigTypeDef config; config.MasterOutputTrigger = TIM_TRGO_UPDATE; config.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; HAL_TIMEx_MasterConfigSynchronization(&TIM6_Handle, &config); // TIM6 start counter HAL_TIM_Base_Start(&TIM6_Handle); } /******************************************************************************/ // Micro Python bindings typedef struct _pyb_dac_obj_t { mp_obj_base_t base; uint32_t dac_channel; // DAC_CHANNEL_1 or DAC_CHANNEL_2 DMA_Stream_TypeDef *dma_stream; // DMA1_Stream5 or DMA1_Stream6 machine_uint_t state; } pyb_dac_obj_t; STATIC pyb_dac_obj_t pyb_dac_channel_1 = {{&pyb_dac_type}, DAC_CHANNEL_1, DMA1_Stream5}; STATIC pyb_dac_obj_t pyb_dac_channel_2 = {{&pyb_dac_type}, DAC_CHANNEL_2, DMA1_Stream6}; // create the dac object // currently support either DAC1 on X5 (id = 1) or DAC2 on X6 (id = 2) STATIC mp_obj_t pyb_dac_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { // check arguments if (!(n_args == 1 && n_kw == 0)) { nlr_jump(mp_obj_new_exception_msg(&mp_type_ValueError, "Dac accepts 1 argument")); } machine_int_t dac_id = mp_obj_get_int(args[0]); uint32_t pin; pyb_dac_obj_t *dac_obj; if (dac_id == 1) { pin = GPIO_PIN_4; dac_obj = &pyb_dac_channel_1; } else if (dac_id == 2) { pin = GPIO_PIN_5; dac_obj = &pyb_dac_channel_2; } else { nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Dac %d does not exist", dac_id)); } // GPIO configuration GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = pin; GPIO_InitStructure.Mode = GPIO_MODE_ANALOG; GPIO_InitStructure.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); // DAC peripheral clock __DAC_CLK_ENABLE(); // stop anything already going on HAL_DAC_Stop(&DAC_Handle, dac_obj->dac_channel); HAL_DAC_Stop_DMA(&DAC_Handle, dac_obj->dac_channel); dac_obj->state = 0; // return object return dac_obj; } STATIC mp_obj_t pyb_dac_noise(mp_obj_t self_in, mp_obj_t freq) { pyb_dac_obj_t *self = self_in; // set TIM6 to trigger the DAC at the given frequency TIM6_Config(mp_obj_get_int(freq)); if (self->state != 2) { // configure DAC to trigger via TIM6 DAC_ChannelConfTypeDef config; config.DAC_Trigger = DAC_TRIGGER_T6_TRGO; config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel); self->state = 2; } // set noise wave generation HAL_DACEx_NoiseWaveGenerate(&DAC_Handle, self->dac_channel, DAC_LFSRUNMASK_BITS10_0); HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_L, 0x7ff0); HAL_DAC_Start(&DAC_Handle, self->dac_channel); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_noise_obj, pyb_dac_noise); STATIC mp_obj_t pyb_dac_triangle(mp_obj_t self_in, mp_obj_t freq) { pyb_dac_obj_t *self = self_in; // set TIM6 to trigger the DAC at the given frequency TIM6_Config(mp_obj_get_int(freq)); if (self->state != 2) { // configure DAC to trigger via TIM6 DAC_ChannelConfTypeDef config; config.DAC_Trigger = DAC_TRIGGER_T6_TRGO; config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel); self->state = 2; } // set triangle wave generation HAL_DACEx_TriangleWaveGenerate(&DAC_Handle, self->dac_channel, DAC_TRIANGLEAMPLITUDE_1023); HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_12B_R, 0x100); HAL_DAC_Start(&DAC_Handle, self->dac_channel); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_triangle_obj, pyb_dac_triangle); // direct access to DAC (8 bit only at the moment) STATIC mp_obj_t pyb_dac_write(mp_obj_t self_in, mp_obj_t val) { pyb_dac_obj_t *self = self_in; if (self->state != 1) { DAC_ChannelConfTypeDef config; config.DAC_Trigger = DAC_TRIGGER_NONE; config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE; HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel); self->state = 1; } HAL_DAC_SetValue(&DAC_Handle, self->dac_channel, DAC_ALIGN_8B_R, mp_obj_get_int(val)); HAL_DAC_Start(&DAC_Handle, self->dac_channel); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_dac_write_obj, pyb_dac_write); // initiates a burst of RAM->DAC using DMA // input data is treated as an array of bytes (8 bit data) // TIM6 is used to set the frequency of the transfer // TODO still needs some attention to get it working properly mp_obj_t pyb_dac_dma(uint n_args, const mp_obj_t *args, mp_map_t *kw_args) { pyb_dac_obj_t *self = args[0]; // set TIM6 to trigger the DAC at the given frequency TIM6_Config(mp_obj_get_int(args[2])); mp_obj_type_t *type = mp_obj_get_type(args[1]); if (type->buffer_p.get_buffer == NULL) { nlr_jump(mp_obj_new_exception_msg(&mp_type_TypeError, "buffer argument must support buffer protocol")); } buffer_info_t bufinfo; type->buffer_p.get_buffer(args[1], &bufinfo, BUFFER_READ); __DMA1_CLK_ENABLE(); /* DMA_Cmd(self->dma_stream, DISABLE); while (DMA_GetCmdStatus(self->dma_stream) != DISABLE) { } DAC_Cmd(self->dac_channel, DISABLE); */ /* // DAC channel configuration DAC_InitTypeDef DAC_InitStructure; DAC_InitStructure.DAC_Trigger = DAC_Trigger_T7_TRGO; DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None; DAC_InitStructure.DAC_LFSRUnmask_TriangleAmplitude = DAC_TriangleAmplitude_1; // unused, but need to set it to a valid value DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable; DAC_Init(self->dac_channel, &DAC_InitStructure); */ if (self->state != 3) { DAC_ChannelConfTypeDef config; config.DAC_Trigger = DAC_TRIGGER_T6_TRGO; config.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; HAL_DAC_ConfigChannel(&DAC_Handle, &config, self->dac_channel); self->state = 3; } // DMA1_Stream[67] channel7 configuration DMA_HandleTypeDef DMA_Handle; DMA_Handle.Instance = self->dma_stream; DMA_Handle.Init.Channel = DMA_CHANNEL_7; DMA_Handle.Init.Direction = DMA_MEMORY_TO_PERIPH; DMA_Handle.Init.PeriphInc = DMA_PINC_DISABLE; DMA_Handle.Init.MemInc = DMA_MINC_ENABLE; DMA_Handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; DMA_Handle.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; mp_map_elem_t *kw_mode = mp_map_lookup(kw_args, MP_OBJ_NEW_QSTR(qstr_from_str("mode")), MP_MAP_LOOKUP); DMA_Handle.Init.Mode = kw_mode == NULL ? DMA_NORMAL : mp_obj_get_int(kw_mode->value); // normal = 0, circular = 0x100 DMA_Handle.Init.Priority = DMA_PRIORITY_HIGH; DMA_Handle.Init.FIFOMode = DMA_FIFOMODE_DISABLE; DMA_Handle.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_HALFFULL; DMA_Handle.Init.MemBurst = DMA_MBURST_SINGLE; DMA_Handle.Init.PeriphBurst = DMA_PBURST_SINGLE; HAL_DMA_Init(&DMA_Handle); __HAL_LINKDMA(&DAC_Handle, DMA_Handle1, DMA_Handle); HAL_DAC_Start_DMA(&DAC_Handle, self->dac_channel, (uint32_t*)bufinfo.buf, bufinfo.len, DAC_ALIGN_8B_R); /* // enable DMA stream DMA_Cmd(self->dma_stream, ENABLE); while (DMA_GetCmdStatus(self->dma_stream) == DISABLE) { } // enable DAC channel DAC_Cmd(self->dac_channel, ENABLE); // enable DMA for DAC channel DAC_DMACmd(self->dac_channel, ENABLE); */ //printf("DMA: %p %lu\n", bufinfo.buf, bufinfo.len); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_dac_dma_obj, 3, pyb_dac_dma); STATIC const mp_map_elem_t pyb_dac_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_noise), (mp_obj_t)&pyb_dac_noise_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_triangle), (mp_obj_t)&pyb_dac_triangle_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&pyb_dac_write_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_dma), (mp_obj_t)&pyb_dac_dma_obj }, // TODO add function that does double buffering: // dma2(freq, buf1, buf2, callback) // where callback is called when the buffer has been drained }; STATIC MP_DEFINE_CONST_DICT(pyb_dac_locals_dict, pyb_dac_locals_dict_table); const mp_obj_type_t pyb_dac_type = { { &mp_type_type }, .name = MP_QSTR_DAC, .make_new = pyb_dac_make_new, .locals_dict = (mp_obj_t)&pyb_dac_locals_dict, };