#include #include #include "stm32f4xx_hal.h" #include "nlr.h" #include "misc.h" #include "mpconfig.h" #include "qstr.h" #include "obj.h" #include "runtime.h" #include "i2c.h" #include "accel.h" #if MICROPY_HW_HAS_MMA7660 /// \moduleref pyb /// \class Accel - accelerometer control /// /// Accel is an object that controls the accelerometer. /// /// Raw values are between -30 and 30. #define MMA_ADDR (0x98) #define MMA_REG_X (0) #define MMA_REG_Y (1) #define MMA_REG_Z (2) #define MMA_REG_TILT (3) #define MMA_REG_MODE (7) #define MMA_AXIS_SIGNED_VALUE(i) (((i) & 0x3f) | ((i) & 0x20 ? (~0x1f) : 0)) void accel_init(void) { GPIO_InitTypeDef GPIO_InitStructure; // PB5 is connected to AVDD; pull high to enable MMA accel device GPIOB->BSRRH = GPIO_PIN_5; // turn off AVDD GPIO_InitStructure.Pin = GPIO_PIN_5; GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStructure.Speed = GPIO_SPEED_LOW; GPIO_InitStructure.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStructure); } STATIC void accel_start(void) { // start the I2C bus in master mode I2CHandle1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; I2CHandle1.Init.ClockSpeed = 400000; I2CHandle1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLED; I2CHandle1.Init.DutyCycle = I2C_DUTYCYCLE_16_9; I2CHandle1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLED; I2CHandle1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLED; I2CHandle1.Init.OwnAddress1 = PYB_I2C_MASTER_ADDRESS; I2CHandle1.Init.OwnAddress2 = 0xfe; // unused i2c_init(&I2CHandle1); // turn off AVDD, wait 20ms, turn on AVDD, wait 20ms again GPIOB->BSRRH = GPIO_PIN_5; // turn off HAL_Delay(20); GPIOB->BSRRL = GPIO_PIN_5; // turn on HAL_Delay(20); HAL_StatusTypeDef status; //printf("IsDeviceReady\n"); for (int i = 0; i < 10; i++) { status = HAL_I2C_IsDeviceReady(&I2CHandle1, MMA_ADDR, 10, 200); //printf(" got %d\n", status); if (status == HAL_OK) { break; } } //printf("MemWrite\n"); uint8_t data[1]; data[0] = 1; // active mode status = HAL_I2C_Mem_Write(&I2CHandle1, MMA_ADDR, MMA_REG_MODE, I2C_MEMADD_SIZE_8BIT, data, 1, 200); //printf(" got %d\n", status); } /******************************************************************************/ /* Micro Python bindings */ #define NUM_AXIS (3) #define FILT_DEPTH (4) typedef struct _pyb_accel_obj_t { mp_obj_base_t base; int16_t buf[NUM_AXIS * FILT_DEPTH]; } pyb_accel_obj_t; STATIC pyb_accel_obj_t pyb_accel_obj; /// \classmethod \constructor() /// Create and return an accelerometer object. STATIC mp_obj_t pyb_accel_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 0, 0, false); // init accel object pyb_accel_obj.base.type = &pyb_accel_type; accel_start(); return &pyb_accel_obj; } STATIC mp_obj_t read_axis(int axis) { uint8_t data[1]; HAL_I2C_Mem_Read(&I2CHandle1, MMA_ADDR, axis, I2C_MEMADD_SIZE_8BIT, data, 1, 200); return mp_obj_new_int(MMA_AXIS_SIGNED_VALUE(data[0])); } /// \method x() /// Get the x-axis value. STATIC mp_obj_t pyb_accel_x(mp_obj_t self_in) { return read_axis(MMA_REG_X); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_accel_x_obj, pyb_accel_x); /// \method y() /// Get the y-axis value. STATIC mp_obj_t pyb_accel_y(mp_obj_t self_in) { return read_axis(MMA_REG_Y); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_accel_y_obj, pyb_accel_y); /// \method z() /// Get the z-axis value. STATIC mp_obj_t pyb_accel_z(mp_obj_t self_in) { return read_axis(MMA_REG_Z); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_accel_z_obj, pyb_accel_z); /// \method tilt() /// Get the tilt register. STATIC mp_obj_t pyb_accel_tilt(mp_obj_t self_in) { uint8_t data[1]; HAL_I2C_Mem_Read(&I2CHandle1, MMA_ADDR, MMA_REG_TILT, I2C_MEMADD_SIZE_8BIT, data, 1, 200); return mp_obj_new_int(data[0]); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_accel_tilt_obj, pyb_accel_tilt); /// \method filtered_xyz() /// Get a 3-tuple of filtered x, y and z values. STATIC mp_obj_t pyb_accel_filtered_xyz(mp_obj_t self_in) { pyb_accel_obj_t *self = self_in; memmove(self->buf, self->buf + NUM_AXIS, NUM_AXIS * (FILT_DEPTH - 1) * sizeof(int16_t)); uint8_t data[NUM_AXIS]; HAL_I2C_Mem_Read(&I2CHandle1, MMA_ADDR, MMA_REG_X, I2C_MEMADD_SIZE_8BIT, data, NUM_AXIS, 200); mp_obj_t tuple[NUM_AXIS]; for (int i = 0; i < NUM_AXIS; i++) { self->buf[NUM_AXIS * (FILT_DEPTH - 1) + i] = MMA_AXIS_SIGNED_VALUE(data[i]); int32_t val = 0; for (int j = 0; j < FILT_DEPTH; j++) { val += self->buf[i + NUM_AXIS * j]; } tuple[i] = mp_obj_new_int(val); } return mp_obj_new_tuple(3, tuple); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_accel_filtered_xyz_obj, pyb_accel_filtered_xyz); STATIC mp_obj_t pyb_accel_read(mp_obj_t self_in, mp_obj_t reg) { uint8_t data[1]; HAL_I2C_Mem_Read(&I2CHandle1, MMA_ADDR, mp_obj_get_int(reg), I2C_MEMADD_SIZE_8BIT, data, 1, 200); return mp_obj_new_int(data[0]); } MP_DEFINE_CONST_FUN_OBJ_2(pyb_accel_read_obj, pyb_accel_read); STATIC mp_obj_t pyb_accel_write(mp_obj_t self_in, mp_obj_t reg, mp_obj_t val) { uint8_t data[1]; data[0] = mp_obj_get_int(val); HAL_I2C_Mem_Write(&I2CHandle1, MMA_ADDR, mp_obj_get_int(reg), I2C_MEMADD_SIZE_8BIT, data, 1, 200); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_3(pyb_accel_write_obj, pyb_accel_write); STATIC const mp_map_elem_t pyb_accel_locals_dict_table[] = { // TODO add init, deinit, and perhaps reset methods { MP_OBJ_NEW_QSTR(MP_QSTR_x), (mp_obj_t)&pyb_accel_x_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_y), (mp_obj_t)&pyb_accel_y_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_z), (mp_obj_t)&pyb_accel_z_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_tilt), (mp_obj_t)&pyb_accel_tilt_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_filtered_xyz), (mp_obj_t)&pyb_accel_filtered_xyz_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&pyb_accel_read_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&pyb_accel_write_obj }, }; STATIC MP_DEFINE_CONST_DICT(pyb_accel_locals_dict, pyb_accel_locals_dict_table); const mp_obj_type_t pyb_accel_type = { { &mp_type_type }, .name = MP_QSTR_Accel, .make_new = pyb_accel_make_new, .locals_dict = (mp_obj_t)&pyb_accel_locals_dict, }; #endif // MICROPY_HW_HAS_MMA7660