/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2015 Daniel Campora * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/mpstate.h" #include "py/runtime.h" #include "bufhelper.h" #include "inc/hw_types.h" #include "inc/hw_mcspi.h" #include "inc/hw_ints.h" #include "inc/hw_memmap.h" #include "rom_map.h" #include "pin.h" #include "prcm.h" #include "spi.h" #include "pybspi.h" #include "mpexception.h" #include "pybsleep.h" #include "pybpin.h" #include "pins.h" /// \moduleref pyb /// \class SPI - a master-driven serial protocol /****************************************************************************** DEFINE TYPES ******************************************************************************/ typedef struct _pyb_spi_obj_t { mp_obj_base_t base; uint baudrate; uint config; byte polarity; byte phase; byte submode; byte wlen; } pyb_spi_obj_t; /****************************************************************************** DEFINE CONSTANTS ******************************************************************************/ #define PYBSPI_FIRST_BIT_MSB 0 /****************************************************************************** DECLARE PRIVATE DATA ******************************************************************************/ STATIC pyb_spi_obj_t pyb_spi_obj = {.baudrate = 0}; STATIC const mp_obj_t pyb_spi_def_pin[3] = {&pin_GP14, &pin_GP16, &pin_GP30}; /****************************************************************************** DEFINE PRIVATE FUNCTIONS ******************************************************************************/ // only master mode is available for the moment STATIC void pybspi_init (const pyb_spi_obj_t *self) { // enable the peripheral clock MAP_PRCMPeripheralClkEnable(PRCM_GSPI, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK); MAP_PRCMPeripheralReset(PRCM_GSPI); MAP_SPIReset(GSPI_BASE); // configure the interface (only master mode supported) MAP_SPIConfigSetExpClk (GSPI_BASE, MAP_PRCMPeripheralClockGet(PRCM_GSPI), self->baudrate, SPI_MODE_MASTER, self->submode, self->config); // enable the interface MAP_SPIEnable(GSPI_BASE); } STATIC void pybspi_tx (pyb_spi_obj_t *self, const void *data) { uint32_t txdata; switch (self->wlen) { case 1: txdata = (uint8_t)(*(char *)data); break; case 2: txdata = (uint16_t)(*(uint16_t *)data); break; case 4: txdata = (uint32_t)(*(uint32_t *)data); break; default: return; } MAP_SPIDataPut (GSPI_BASE, txdata); } STATIC void pybspi_rx (pyb_spi_obj_t *self, void *data) { uint32_t rxdata; MAP_SPIDataGet (GSPI_BASE, &rxdata); if (data) { switch (self->wlen) { case 1: *(char *)data = rxdata; break; case 2: *(uint16_t *)data = rxdata; break; case 4: *(uint32_t *)data = rxdata; break; default: return; } } } STATIC void pybspi_transfer (pyb_spi_obj_t *self, const char *txdata, char *rxdata, uint32_t len, uint32_t *txchar) { if (!self->baudrate) { mp_raise_msg(&mp_type_OSError, mpexception_os_request_not_possible); } // send and receive the data MAP_SPICSEnable(GSPI_BASE); for (int i = 0; i < len; i += self->wlen) { pybspi_tx(self, txdata ? (const void *)&txdata[i] : txchar); pybspi_rx(self, rxdata ? (void *)&rxdata[i] : NULL); } MAP_SPICSDisable(GSPI_BASE); } /******************************************************************************/ /* Micro Python bindings */ /******************************************************************************/ STATIC void pyb_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_spi_obj_t *self = self_in; if (self->baudrate > 0) { mp_printf(print, "SPI(0, SPI.MASTER, baudrate=%u, bits=%u, polarity=%u, phase=%u, firstbit=SPI.MSB)", self->baudrate, (self->wlen * 8), self->polarity, self->phase); } else { mp_print_str(print, "SPI(0)"); } } STATIC mp_obj_t pyb_spi_init_helper(pyb_spi_obj_t *self, const mp_arg_val_t *args) { // verify that mode is master if (args[0].u_int != SPI_MODE_MASTER) { goto invalid_args; } uint bits; switch (args[2].u_int) { case 8: bits = SPI_WL_8; break; case 16: bits = SPI_WL_16; break; case 32: bits = SPI_WL_32; break; default: goto invalid_args; break; } uint polarity = args[3].u_int; uint phase = args[4].u_int; if (polarity > 1 || phase > 1) { goto invalid_args; } uint firstbit = args[5].u_int; if (firstbit != PYBSPI_FIRST_BIT_MSB) { goto invalid_args; } // build the configuration self->baudrate = args[1].u_int; self->wlen = args[2].u_int >> 3; self->config = bits | SPI_CS_ACTIVELOW | SPI_SW_CTRL_CS | SPI_4PIN_MODE | SPI_TURBO_OFF; self->polarity = polarity; self->phase = phase; self->submode = (polarity << 1) | phase; // assign the pins mp_obj_t pins_o = args[6].u_obj; if (pins_o != mp_const_none) { mp_obj_t *pins; if (pins_o == MP_OBJ_NULL) { // use the default pins pins = (mp_obj_t *)pyb_spi_def_pin; } else { mp_obj_get_array_fixed_n(pins_o, 3, &pins); } pin_assign_pins_af (pins, 3, PIN_TYPE_STD_PU, PIN_FN_SPI, 0); } // init the bus pybspi_init((const pyb_spi_obj_t *)self); // register it with the sleep module pyb_sleep_add((const mp_obj_t)self, (WakeUpCB_t)pybspi_init); return mp_const_none; invalid_args: mp_raise_ValueError(mpexception_value_invalid_arguments); } static const mp_arg_t pyb_spi_init_args[] = { { MP_QSTR_id, MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_mode, MP_ARG_INT, {.u_int = SPI_MODE_MASTER} }, { MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000000} }, // 1MHz { MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = PYBSPI_FIRST_BIT_MSB} }, { MP_QSTR_pins, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, }; STATIC mp_obj_t pyb_spi_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *all_args) { // parse args mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args); mp_arg_val_t args[MP_ARRAY_SIZE(pyb_spi_init_args)]; mp_arg_parse_all(n_args, all_args, &kw_args, MP_ARRAY_SIZE(args), pyb_spi_init_args, args); // check the peripheral id if (args[0].u_int != 0) { mp_raise_msg(&mp_type_OSError, mpexception_os_resource_not_avaliable); } // setup the object pyb_spi_obj_t *self = &pyb_spi_obj; self->base.type = &pyb_spi_type; // start the peripheral pyb_spi_init_helper(self, &args[1]); return self; } STATIC mp_obj_t pyb_spi_init(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // parse args mp_arg_val_t args[MP_ARRAY_SIZE(pyb_spi_init_args) - 1]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(args), &pyb_spi_init_args[1], args); return pyb_spi_init_helper(pos_args[0], args); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_init_obj, 1, pyb_spi_init); /// \method deinit() /// Turn off the spi bus. STATIC mp_obj_t pyb_spi_deinit(mp_obj_t self_in) { // disable the peripheral MAP_SPIDisable(GSPI_BASE); MAP_PRCMPeripheralClkDisable(PRCM_GSPI, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK); // invalidate the baudrate pyb_spi_obj.baudrate = 0; // unregister it with the sleep module pyb_sleep_remove((const mp_obj_t)self_in); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_spi_deinit_obj, pyb_spi_deinit); STATIC mp_obj_t pyb_spi_write (mp_obj_t self_in, mp_obj_t buf) { // parse args pyb_spi_obj_t *self = self_in; // get the buffer to send from mp_buffer_info_t bufinfo; uint8_t data[1]; pyb_buf_get_for_send(buf, &bufinfo, data); // just send pybspi_transfer(self, (const char *)bufinfo.buf, NULL, bufinfo.len, NULL); // return the number of bytes written return mp_obj_new_int(bufinfo.len); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_spi_write_obj, pyb_spi_write); STATIC mp_obj_t pyb_spi_read(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_nbytes, MP_ARG_REQUIRED | MP_ARG_OBJ, }, { MP_QSTR_write, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x00} }, }; // parse args pyb_spi_obj_t *self = pos_args[0]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(args), allowed_args, args); // get the buffer to receive into vstr_t vstr; pyb_buf_get_for_recv(args[0].u_obj, &vstr); // just receive uint32_t write = args[1].u_int; pybspi_transfer(self, NULL, vstr.buf, vstr.len, &write); // return the received data return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_read_obj, 1, pyb_spi_read); STATIC mp_obj_t pyb_spi_readinto(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_buf, MP_ARG_REQUIRED | MP_ARG_OBJ, }, { MP_QSTR_write, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x00} }, }; // parse args pyb_spi_obj_t *self = pos_args[0]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(args), allowed_args, args); // get the buffer to receive into vstr_t vstr; pyb_buf_get_for_recv(args[0].u_obj, &vstr); // just receive uint32_t write = args[1].u_int; pybspi_transfer(self, NULL, vstr.buf, vstr.len, &write); // return the number of bytes received return mp_obj_new_int(vstr.len); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_readinto_obj, 1, pyb_spi_readinto); STATIC mp_obj_t pyb_spi_write_readinto (mp_obj_t self, mp_obj_t writebuf, mp_obj_t readbuf) { // get buffers to write from/read to mp_buffer_info_t bufinfo_write; uint8_t data_send[1]; mp_buffer_info_t bufinfo_read; if (writebuf == readbuf) { // same object for writing and reading, it must be a r/w buffer mp_get_buffer_raise(writebuf, &bufinfo_write, MP_BUFFER_RW); bufinfo_read = bufinfo_write; } else { // get the buffer to write from pyb_buf_get_for_send(writebuf, &bufinfo_write, data_send); // get the read buffer mp_get_buffer_raise(readbuf, &bufinfo_read, MP_BUFFER_WRITE); if (bufinfo_read.len != bufinfo_write.len) { mp_raise_ValueError(mpexception_value_invalid_arguments); } } // send and receive pybspi_transfer(self, (const char *)bufinfo_write.buf, bufinfo_read.buf, bufinfo_write.len, NULL); // return the number of transferred bytes return mp_obj_new_int(bufinfo_write.len); } STATIC MP_DEFINE_CONST_FUN_OBJ_3(pyb_spi_write_readinto_obj, pyb_spi_write_readinto); STATIC const mp_map_elem_t pyb_spi_locals_dict_table[] = { // instance methods { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_spi_init_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_spi_deinit_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_write), (mp_obj_t)&pyb_spi_write_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&pyb_spi_read_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_readinto), (mp_obj_t)&pyb_spi_readinto_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_write_readinto), (mp_obj_t)&pyb_spi_write_readinto_obj }, // class constants { MP_OBJ_NEW_QSTR(MP_QSTR_MASTER), MP_OBJ_NEW_SMALL_INT(SPI_MODE_MASTER) }, { MP_OBJ_NEW_QSTR(MP_QSTR_MSB), MP_OBJ_NEW_SMALL_INT(PYBSPI_FIRST_BIT_MSB) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_spi_locals_dict, pyb_spi_locals_dict_table); const mp_obj_type_t pyb_spi_type = { { &mp_type_type }, .name = MP_QSTR_SPI, .print = pyb_spi_print, .make_new = pyb_spi_make_new, .locals_dict = (mp_obj_t)&pyb_spi_locals_dict, };