/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "ets_sys.h" #include "espuart.h" #include "py/runtime.h" #include "py/stream.h" #include "py/mperrno.h" #include "modmachine.h" // UartDev is defined and initialized in rom code. extern UartDevice UartDev; typedef struct _pyb_uart_obj_t { mp_obj_base_t base; uint8_t uart_id; uint8_t bits; uint8_t parity; uint8_t stop; uint32_t baudrate; uint16_t timeout; // timeout waiting for first char (in ms) uint16_t timeout_char; // timeout waiting between chars (in ms) } pyb_uart_obj_t; STATIC const char *_parity_name[] = {"None", "1", "0"}; /******************************************************************************/ // MicroPython bindings for UART STATIC void pyb_uart_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_printf(print, "UART(%u, baudrate=%u, bits=%u, parity=%s, stop=%u, timeout=%u, timeout_char=%u)", self->uart_id, self->baudrate, self->bits, _parity_name[self->parity], self->stop, self->timeout, self->timeout_char); } STATIC void pyb_uart_init_helper(pyb_uart_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_baudrate, ARG_bits, ARG_parity, ARG_stop, ARG_timeout, ARG_timeout_char }; static const mp_arg_t allowed_args[] = { { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_bits, MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_parity, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_stop, MP_ARG_INT, {.u_int = 0} }, //{ MP_QSTR_tx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, //{ MP_QSTR_rx, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_timeout_char, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // set baudrate if (args[ARG_baudrate].u_int > 0) { self->baudrate = args[ARG_baudrate].u_int; UartDev.baut_rate = self->baudrate; // Sic! } // set data bits switch (args[ARG_bits].u_int) { case 0: break; case 5: UartDev.data_bits = UART_FIVE_BITS; self->bits = 5; break; case 6: UartDev.data_bits = UART_SIX_BITS; self->bits = 6; break; case 7: UartDev.data_bits = UART_SEVEN_BITS; self->bits = 7; break; case 8: UartDev.data_bits = UART_EIGHT_BITS; self->bits = 8; break; default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid data bits")); break; } // set parity if (args[ARG_parity].u_obj != MP_OBJ_NULL) { if (args[ARG_parity].u_obj == mp_const_none) { UartDev.parity = UART_NONE_BITS; UartDev.exist_parity = UART_STICK_PARITY_DIS; self->parity = 0; } else { mp_int_t parity = mp_obj_get_int(args[ARG_parity].u_obj); UartDev.exist_parity = UART_STICK_PARITY_EN; if (parity & 1) { UartDev.parity = UART_ODD_BITS; self->parity = 1; } else { UartDev.parity = UART_EVEN_BITS; self->parity = 2; } } } // set stop bits switch (args[ARG_stop].u_int) { case 0: break; case 1: UartDev.stop_bits = UART_ONE_STOP_BIT; self->stop = 1; break; case 2: UartDev.stop_bits = UART_TWO_STOP_BIT; self->stop = 2; break; default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid stop bits")); break; } // set timeout self->timeout = args[ARG_timeout].u_int; // set timeout_char // make sure it is at least as long as a whole character (13 bits to be safe) self->timeout_char = args[ARG_timeout_char].u_int; uint32_t min_timeout_char = 13000 / self->baudrate + 1; if (self->timeout_char < min_timeout_char) { self->timeout_char = min_timeout_char; } // setup uart_setup(self->uart_id); } STATIC mp_obj_t pyb_uart_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // get uart id mp_int_t uart_id = mp_obj_get_int(args[0]); if (uart_id != 0 && uart_id != 1) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "UART(%d) does not exist", uart_id)); } // create instance pyb_uart_obj_t *self = m_new_obj(pyb_uart_obj_t); self->base.type = &pyb_uart_type; self->uart_id = uart_id; self->baudrate = 115200; self->bits = 8; self->parity = 0; self->stop = 1; self->timeout = 0; self->timeout_char = 0; // init the peripheral mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pyb_uart_init_helper(self, n_args - 1, args + 1, &kw_args); return MP_OBJ_FROM_PTR(self); } STATIC mp_obj_t pyb_uart_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { pyb_uart_init_helper(args[0], n_args - 1, args + 1, kw_args); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(pyb_uart_init_obj, 1, pyb_uart_init); STATIC const mp_rom_map_elem_t pyb_uart_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_uart_init_obj) }, { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) }, { MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_uart_locals_dict, pyb_uart_locals_dict_table); STATIC mp_uint_t pyb_uart_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) { pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); if (self->uart_id == 1) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OSError, "UART(1) can't read")); } // make sure we want at least 1 char if (size == 0) { return 0; } // wait for first char to become available if (!uart_rx_wait(self->timeout * 1000)) { *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } // read the data uint8_t *buf = buf_in; for (;;) { *buf++ = uart_rx_char(); if (--size == 0 || !uart_rx_wait(self->timeout_char * 1000)) { // return number of bytes read return buf - (uint8_t*)buf_in; } } } STATIC mp_uint_t pyb_uart_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) { pyb_uart_obj_t *self = MP_OBJ_TO_PTR(self_in); const byte *buf = buf_in; /* TODO implement non-blocking // wait to be able to write the first character if (!uart_tx_wait(self, timeout)) { *errcode = EAGAIN; return MP_STREAM_ERROR; } */ // write the data for (size_t i = 0; i < size; ++i) { uart_tx_one_char(self->uart_id, *buf++); } // return number of bytes written return size; } STATIC mp_uint_t pyb_uart_ioctl(mp_obj_t self_in, mp_uint_t request, mp_uint_t arg, int *errcode) { *errcode = MP_EINVAL; return MP_STREAM_ERROR; } STATIC const mp_stream_p_t uart_stream_p = { .read = pyb_uart_read, .write = pyb_uart_write, .ioctl = pyb_uart_ioctl, .is_text = false, }; const mp_obj_type_t pyb_uart_type = { { &mp_type_type }, .name = MP_QSTR_UART, .print = pyb_uart_print, .make_new = pyb_uart_make_new, .getiter = mp_identity, .iternext = mp_stream_unbuffered_iter, .protocol = &uart_stream_p, .locals_dict = (mp_obj_dict_t*)&pyb_uart_locals_dict, };