/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "boards/board.h" #include "supervisor/port.h" // ASF 4 #include "atmel_start_pins.h" #include "hal/include/hal_delay.h" #include "hal/include/hal_gpio.h" #include "hal/include/hal_init.h" #include "hal/include/hal_usb_device.h" #include "hpl/gclk/hpl_gclk_base.h" #include "hpl/pm/hpl_pm_base.h" #ifdef SAMD21 #include "hri/hri_pm_d21.h" #endif #ifdef SAMD51 #include "hri/hri_rstc_d51.h" #endif #include "common-hal/analogio/AnalogIn.h" #include "common-hal/analogio/AnalogOut.h" #include "common-hal/microcontroller/Pin.h" #include "common-hal/pulseio/PulseIn.h" #include "common-hal/pulseio/PulseOut.h" #include "common-hal/pulseio/PWMOut.h" #include "tick.h" extern volatile bool mp_msc_enabled; #if defined(SAMD21) && defined(ENABLE_MICRO_TRACE_BUFFER) // Stores 2 ^ TRACE_BUFFER_MAGNITUDE_PACKETS packets. // 7 -> 128 packets #define TRACE_BUFFER_MAGNITUDE_PACKETS 7 // Size in uint32_t. Two per packet. #define TRACE_BUFFER_SIZE (1 << (TRACE_BUFFER_MAGNITUDE_PACKETS + 1)) // Size in bytes. 4 bytes per uint32_t. #define TRACE_BUFFER_SIZE_BYTES (TRACE_BUFFER_SIZE << 2) __attribute__((__aligned__(TRACE_BUFFER_SIZE_BYTES))) uint32_t mtb[TRACE_BUFFER_SIZE]; #endif safe_mode_t port_init(void) { #if defined(SAMD21) #ifdef ENABLE_MICRO_TRACE_BUFFER REG_MTB_POSITION = ((uint32_t) (mtb - REG_MTB_BASE)) & 0xFFFFFFF8; REG_MTB_FLOW = (((uint32_t) mtb - REG_MTB_BASE) + TRACE_BUFFER_SIZE_BYTES) & 0xFFFFFFF8; REG_MTB_MASTER = 0x80000000 + (TRACE_BUFFER_MAGNITUDE_PACKETS - 1); #else // Triple check that the MTB is off. Switching between debug and non-debug // builds can leave it set over reset and wreak havok as a result. REG_MTB_MASTER = 0x00000000 + 6; #endif #endif // On power on start or external reset, set _ezero to the canary word. If it // gets killed, we boot in safe mode. _ezero is the boundary between statically // allocated memory including the fixed MicroPython heap and the stack. If either // misbehaves, the canary will not be intact after soft reset. #ifdef CIRCUITPY_CANARY_WORD #ifdef SAMD21 bool power_on_or_external_reset = hri_pm_get_RCAUSE_POR_bit(PM) || hri_pm_get_RCAUSE_EXT_bit(PM); bool system_reset = hri_pm_get_RCAUSE_SYST_bit(PM); #endif #ifdef SAMD51 bool power_on_or_external_reset = hri_rstc_get_RCAUSE_POR_bit(RSTC) || hri_rstc_get_RCAUSE_EXT_bit(RSTC); bool system_reset = hri_rstc_get_RCAUSE_SYST_bit(RSTC); #endif if (power_on_or_external_reset) { _ezero = CIRCUITPY_CANARY_WORD; } else if (system_reset) { // If we're starting from a system reset we're likely coming from the // bootloader or hard fault handler. If we're coming from the handler // the canary will be CIRCUITPY_SAFE_RESTART_WORD and we don't want to // revive the canary so that a second hard fault won't restart. Resets // from anywhere else are ok. if (_ezero == CIRCUITPY_SAFE_RESTART_WORD) { _ezero = ~CIRCUITPY_CANARY_WORD; } else { _ezero = CIRCUITPY_CANARY_WORD; } } #endif init_mcu(); board_init(); // Configure millisecond timer initialization. tick_init(); // Init the nvm controller. // struct nvm_config config_nvm; // nvm_get_config_defaults(&config_nvm); // config_nvm.manual_page_write = false; // nvm_set_config(&config_nvm); // init_shared_dma(); #ifdef CIRCUITPY_CANARY_WORD // Run in safe mode if the canary is corrupt. if (_ezero != CIRCUITPY_CANARY_WORD) { return HARD_CRASH; } #endif // if (PM->RCAUSE.bit.BOD33 == 1 || PM->RCAUSE.bit.BOD12 == 1) { // return BROWNOUT; // } if (board_requests_safe_mode()) { return USER_SAFE_MODE; } // #if CIRCUITPY_INTERNAL_NVM_SIZE > 0 // // Upgrade the nvm flash to include one sector for eeprom emulation. // struct nvm_fusebits fuses; // if (nvm_get_fuses(&fuses) == STATUS_OK && // fuses.eeprom_size == NVM_EEPROM_EMULATOR_SIZE_0) { // #ifdef INTERNAL_FLASH_FS // // Shift the internal file system up one row. // for (uint8_t row = 0; row < TOTAL_INTERNAL_FLASH_SIZE / NVMCTRL_ROW_SIZE; row++) { // uint32_t new_row_address = INTERNAL_FLASH_MEM_SEG1_START_ADDR + row * NVMCTRL_ROW_SIZE; // nvm_erase_row(new_row_address); // nvm_write_buffer(new_row_address, // (uint8_t*) (new_row_address + CIRCUITPY_INTERNAL_EEPROM_SIZE), // NVMCTRL_ROW_SIZE); // } // #endif // uint32_t nvm_size = CIRCUITPY_INTERNAL_NVM_SIZE; // uint8_t enum_value = 6; // while (nvm_size > 256 && enum_value != 255) { // nvm_size /= 2; // enum_value -= 1; // } // if (enum_value != 255 && nvm_size == 256) { // // Mark the last section as eeprom now. // fuses.eeprom_size = (enum nvm_eeprom_emulator_size) enum_value; // nvm_set_fuses(&fuses); // } // } // #endif return NO_SAFE_MODE; } void reset_port(void) { // Reset all SERCOMs except the ones being used by on-board devices. Sercom *sercom_instances[SERCOM_INST_NUM] = SERCOM_INSTS; for (int i = 0; i < SERCOM_INST_NUM; i++) { #ifdef SPI_FLASH_SERCOM if (sercom_instances[i] == SPI_FLASH_SERCOM) { continue; } #endif #ifdef MICROPY_HW_APA102_SERCOM if (sercom_instances[i] == MICROPY_HW_APA102_SERCOM) { continue; } #endif // SWRST is same for all modes of SERCOMs. sercom_instances[i]->SPI.CTRLA.bit.SWRST = 1; } // #ifdef EXPRESS_BOARD // audioout_reset(); // touchin_reset(); // pdmin_reset(); // #endif pulsein_reset(); pulseout_reset(); pwmout_reset(); analogin_reset(); // #ifdef CIRCUITPY_GAMEPAD_TICKS // gamepad_reset(); // #endif // analogout_reset(); reset_all_pins(); // Set up debugging pins after reset_all_pins(). // Uncomment to init PIN_PA17 for debugging. // struct port_config pin_conf; // port_get_config_defaults(&pin_conf); // // pin_conf.direction = PORT_PIN_DIR_OUTPUT; // port_pin_set_config(MICROPY_HW_LED1, &pin_conf); // port_pin_set_output_level(MICROPY_HW_LED1, false); // Output clocks for debugging. // not supported by SAMD51G; uncomment for SAMD51J or update for 51G // #ifdef SAMD51 // gpio_set_pin_function(PIN_PA10, GPIO_PIN_FUNCTION_M); // GCLK4, D3 // gpio_set_pin_function(PIN_PA11, GPIO_PIN_FUNCTION_M); // GCLK5, A4 // gpio_set_pin_function(PIN_PB14, GPIO_PIN_FUNCTION_M); // GCLK0, D5 // gpio_set_pin_function(PIN_PB15, GPIO_PIN_FUNCTION_M); // GCLK1, D6 // #endif // // usb_hid_reset(); // // #ifdef CALIBRATE_CRYSTALLESS // // If we are on USB lets double check our fine calibration for the clock and // // save the new value if its different enough. // if (mp_msc_enabled) { // SYSCTRL->DFLLSYNC.bit.READREQ = 1; // uint16_t saved_calibration = 0x1ff; // if (strcmp((char*) INTERNAL_CIRCUITPY_CONFIG_START_ADDR, "CIRCUITPYTHON1") == 0) { // saved_calibration = ((uint16_t *) INTERNAL_CIRCUITPY_CONFIG_START_ADDR)[8]; // } // while (SYSCTRL->PCLKSR.bit.DFLLRDY == 0) { // // TODO(tannewt): Run the mass storage stuff if this takes a while. // } // int16_t current_calibration = SYSCTRL->DFLLVAL.bit.FINE; // if (abs(current_calibration - saved_calibration) > 10) { // enum status_code error_code; // uint8_t page_buffer[NVMCTRL_ROW_SIZE]; // for (int i = 0; i < NVMCTRL_ROW_PAGES; i++) { // do // { // error_code = nvm_read_buffer(INTERNAL_CIRCUITPY_CONFIG_START_ADDR + i * NVMCTRL_PAGE_SIZE, // page_buffer + i * NVMCTRL_PAGE_SIZE, // NVMCTRL_PAGE_SIZE); // } while (error_code == STATUS_BUSY); // } // // If this is the first write, include the header. // if (strcmp((char*) page_buffer, "CIRCUITPYTHON1") != 0) { // memcpy(page_buffer, "CIRCUITPYTHON1", 15); // } // // First 16 bytes (0-15) are ID. Little endian! // page_buffer[16] = current_calibration & 0xff; // page_buffer[17] = current_calibration >> 8; // do // { // error_code = nvm_erase_row(INTERNAL_CIRCUITPY_CONFIG_START_ADDR); // } while (error_code == STATUS_BUSY); // for (int i = 0; i < NVMCTRL_ROW_PAGES; i++) { // do // { // error_code = nvm_write_buffer(INTERNAL_CIRCUITPY_CONFIG_START_ADDR + i * NVMCTRL_PAGE_SIZE, // page_buffer + i * NVMCTRL_PAGE_SIZE, // NVMCTRL_PAGE_SIZE); // } while (error_code == STATUS_BUSY); // } // } // } // #endif } /** * \brief Default interrupt handler for unused IRQs. */ __attribute__((used)) void HardFault_Handler(void) { while (true) { asm(""); } for (uint32_t i = 0; i < 100000; i++) { asm("noop;"); } }