/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/nlr.h" #include "py/runtime.h" #include "py/mphal.h" #include "modmachine_pin.h" #include "asf/sam0/drivers/port/port.h" /// \moduleref machine /// \class Pin - control I/O pins /// /// A pin is the basic object to control I/O pins. It has methods to set /// the mode of the pin (input, output, etc) and methods to get and set the /// digital logic level. For analog control of a pin, see the ADC class. /// /// Usage Model: /// /// All Board Pins are predefined as pyb.Pin.board.Name /// /// x1_pin = machine.Pin.board.X1 /// /// g = machine.Pin(machine.Pin.board.X1, pyb.Pin.IN) /// /// CPU pins which correspond to the board pins are available /// as `pyb.cpu.Name`. For the CPU pins, the names are the port letter /// followed by the pin number. On the PYBv1.0, `pyb.Pin.board.X1` and /// `pyb.Pin.cpu.B6` are the same pin. /// /// You can also use strings: /// /// g = pyb.Pin('X1', pyb.Pin.OUT_PP) /// /// Users can add their own names: /// /// MyMapperDict = { 'LeftMotorDir' : pyb.Pin.cpu.C12 } /// pyb.Pin.dict(MyMapperDict) /// g = pyb.Pin("LeftMotorDir", pyb.Pin.OUT_OD) /// /// and can query mappings /// /// pin = pyb.Pin("LeftMotorDir") /// /// Users can also add their own mapping function: /// /// def MyMapper(pin_name): /// if pin_name == "LeftMotorDir": /// return pyb.Pin.cpu.A0 /// /// pyb.Pin.mapper(MyMapper) /// /// So, if you were to call: `pyb.Pin("LeftMotorDir", pyb.Pin.OUT_PP)` /// then `"LeftMotorDir"` is passed directly to the mapper function. /// /// To summarise, the following order determines how things get mapped into /// an ordinal pin number: /// /// 1. Directly specify a pin object /// 2. User supplied mapping function /// 3. User supplied mapping (object must be usable as a dictionary key) /// 4. Supply a string which matches a board pin /// 5. Supply a string which matches a CPU port/pin /// /// You can set `pyb.Pin.debug(True)` to get some debug information about /// how a particular object gets mapped to a pin. // Pin class variables STATIC bool pin_class_debug; void pin_init0(void) { MP_STATE_PORT(pin_class_mapper) = mp_const_none; MP_STATE_PORT(pin_class_map_dict) = mp_const_none; pin_class_debug = false; } // C API used to convert a user-supplied pin name into an ordinal pin number. const pin_obj_t *pin_find(mp_obj_t user_obj) { const pin_obj_t *pin_obj; // If a pin was provided, then use it if (MP_OBJ_IS_TYPE(user_obj, &pin_type)) { pin_obj = user_obj; if (pin_class_debug) { printf("Pin map passed pin "); mp_obj_print((mp_obj_t)pin_obj, PRINT_STR); printf("\n"); } return pin_obj; } if (MP_STATE_PORT(pin_class_mapper) != mp_const_none) { pin_obj = mp_call_function_1(MP_STATE_PORT(pin_class_mapper), user_obj); if (pin_obj != mp_const_none) { if (!MP_OBJ_IS_TYPE(pin_obj, &pin_type)) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "Pin.mapper didn't return a Pin object")); } if (pin_class_debug) { printf("Pin.mapper maps "); mp_obj_print(user_obj, PRINT_REPR); printf(" to "); mp_obj_print((mp_obj_t)pin_obj, PRINT_STR); printf("\n"); } return pin_obj; } // The pin mapping function returned mp_const_none, fall through to // other lookup methods. } if (MP_STATE_PORT(pin_class_map_dict) != mp_const_none) { mp_map_t *pin_map_map = mp_obj_dict_get_map(MP_STATE_PORT(pin_class_map_dict)); mp_map_elem_t *elem = mp_map_lookup(pin_map_map, user_obj, MP_MAP_LOOKUP); if (elem != NULL && elem->value != NULL) { pin_obj = elem->value; if (pin_class_debug) { printf("Pin.map_dict maps "); mp_obj_print(user_obj, PRINT_REPR); printf(" to "); mp_obj_print((mp_obj_t)pin_obj, PRINT_STR); printf("\n"); } return pin_obj; } } // See if the pin name matches a board pin pin_obj = pin_find_named_pin(&pin_board_pins_locals_dict, user_obj); if (pin_obj) { if (pin_class_debug) { printf("Pin.board maps "); mp_obj_print(user_obj, PRINT_REPR); printf(" to "); mp_obj_print((mp_obj_t)pin_obj, PRINT_STR); printf("\n"); } return pin_obj; } // See if the pin name matches a cpu pin pin_obj = pin_find_named_pin(&pin_cpu_pins_locals_dict, user_obj); if (pin_obj) { if (pin_class_debug) { printf("Pin.cpu maps "); mp_obj_print(user_obj, PRINT_REPR); printf(" to "); mp_obj_print((mp_obj_t)pin_obj, PRINT_STR); printf("\n"); } return pin_obj; } nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin '%s' not a valid pin identifier", mp_obj_str_get_str(user_obj))); } /// \method __str__() /// Return a string describing the pin object. STATIC void pin_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pin_obj_t *self = self_in; // pin name mp_printf(print, "Pin(Pin.cpu.%q)", self->name); } STATIC mp_obj_t pin_obj_init_helper(const pin_obj_t *pin, mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args); /// \classmethod \constructor(id, ...) /// Create a new Pin object associated with the id. If additional arguments are given, /// they are used to initialise the pin. See `init`. STATIC mp_obj_t pin_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true); // Run an argument through the mapper and return the result. const pin_obj_t *pin = pin_find(args[0]); if (n_args > 1 || n_kw > 0) { // pin mode given, so configure this GPIO mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, args + n_args); pin_obj_init_helper(pin, n_args - 1, args + 1, &kw_args); } return (mp_obj_t)pin; } // fast method for getting/setting pin value STATIC mp_obj_t pin_call(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 0, 1, false); pin_obj_t *self = self_in; if (n_args == 0) { // get pin // TODO(tannewt): Do we need to switch read functions based on our direction? return MP_OBJ_NEW_SMALL_INT(port_pin_get_input_level(self->pin)); } else { // set pin port_pin_set_output_level(self->pin, mp_obj_is_true(args[0])); return mp_const_none; } } /// \classmethod mapper([fun]) /// Get or set the pin mapper function. STATIC mp_obj_t pin_mapper(mp_uint_t n_args, const mp_obj_t *args) { if (n_args > 1) { MP_STATE_PORT(pin_class_mapper) = args[1]; return mp_const_none; } return MP_STATE_PORT(pin_class_mapper); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_mapper_fun_obj, 1, 2, pin_mapper); STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_mapper_obj, (mp_obj_t)&pin_mapper_fun_obj); /// \classmethod dict([dict]) /// Get or set the pin mapper dictionary. STATIC mp_obj_t pin_map_dict(mp_uint_t n_args, const mp_obj_t *args) { if (n_args > 1) { MP_STATE_PORT(pin_class_map_dict) = args[1]; return mp_const_none; } return MP_STATE_PORT(pin_class_map_dict); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_map_dict_fun_obj, 1, 2, pin_map_dict); STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_map_dict_obj, (mp_obj_t)&pin_map_dict_fun_obj); /// \classmethod debug([state]) /// Get or set the debugging state (`True` or `False` for on or off). STATIC mp_obj_t pin_debug(mp_uint_t n_args, const mp_obj_t *args) { if (n_args > 1) { pin_class_debug = mp_obj_is_true(args[1]); return mp_const_none; } return mp_obj_new_bool(pin_class_debug); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_debug_fun_obj, 1, 2, pin_debug); STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_debug_obj, (mp_obj_t)&pin_debug_fun_obj); // init(mode, pull=None, *, value, alt) STATIC mp_obj_t pin_obj_init_helper(const pin_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT }, { MP_QSTR_pull, MP_ARG_OBJ, {.u_obj = mp_const_none}}, { MP_QSTR_value, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}}, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // get io mode enum port_pin_dir mode = args[0].u_int; switch(mode) { case PORT_PIN_DIR_INPUT: case PORT_PIN_DIR_OUTPUT: case PORT_PIN_DIR_OUTPUT_WTH_READBACK: //do the work break; default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid pin mode: %d", mode)); } // get pull mode enum port_pin_pull pull = PORT_PIN_PULL_NONE; if (args[1].u_obj != mp_const_none) { pull = mp_obj_get_int(args[1].u_obj); } switch(pull) { case PORT_PIN_PULL_NONE: case PORT_PIN_PULL_UP: case PORT_PIN_PULL_DOWN: //do the work break; default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid pin pull: %d", pull)); } // if given, set the pin value before initialising to prevent glitches if (args[2].u_obj != MP_OBJ_NULL) { port_pin_set_output_level(self->pin, mp_obj_is_true(args[2].u_obj)); } // configure the GPIO as requested struct port_config pin_conf; port_get_config_defaults(&pin_conf); pin_conf.direction = mode; pin_conf.input_pull = pull; port_pin_set_config(self->pin, &pin_conf); return mp_const_none; } STATIC mp_obj_t pin_obj_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { return pin_obj_init_helper(args[0], n_args - 1, args + 1, kw_args); } MP_DEFINE_CONST_FUN_OBJ_KW(pin_init_obj, 1, pin_obj_init); /// \method value([value]) /// Get or set the digital logic level of the pin: /// /// - With no argument, return 0 or 1 depending on the logic level of the pin. /// - With `value` given, set the logic level of the pin. `value` can be /// anything that converts to a boolean. If it converts to `True`, the pin /// is set high, otherwise it is set low. STATIC mp_obj_t pin_value(mp_uint_t n_args, const mp_obj_t *args) { return pin_call(args[0], n_args - 1, 0, args + 1); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_value_obj, 1, 2, pin_value); /// \method low() /// Set the pin to a low logic level. STATIC mp_obj_t pin_low(mp_obj_t self_in) { pin_obj_t *self = self_in; port_pin_set_output_level(self->pin, false); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_low_obj, pin_low); /// \method high() /// Set the pin to a high logic level. STATIC mp_obj_t pin_high(mp_obj_t self_in) { pin_obj_t *self = self_in; port_pin_set_output_level(self->pin, true); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_high_obj, pin_high); /// \method name() /// Get the pin name. STATIC mp_obj_t pin_name(mp_obj_t self_in) { pin_obj_t *self = self_in; return MP_OBJ_NEW_QSTR(self->name); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_name_obj, pin_name); /// \method names() /// Returns the cpu and board names for this pin. STATIC mp_obj_t pin_names(mp_obj_t self_in) { pin_obj_t *self = self_in; mp_obj_t result = mp_obj_new_list(0, NULL); mp_obj_list_append(result, MP_OBJ_NEW_QSTR(self->name)); mp_map_t *map = mp_obj_dict_get_map((mp_obj_t)&pin_board_pins_locals_dict); mp_map_elem_t *elem = map->table; for (mp_uint_t i = 0; i < map->used; i++, elem++) { if (elem->value == self) { mp_obj_list_append(result, elem->key); } } return result; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_names_obj, pin_names); /// \method pin() /// Get the pin number. STATIC mp_obj_t pin_pin(mp_obj_t self_in) { pin_obj_t *self = self_in; return MP_OBJ_NEW_SMALL_INT(self->pin); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_pin_obj, pin_pin); /// \method gpio() /// Returns the base address of the GPIO block associated with this pin. STATIC mp_obj_t pin_gpio(mp_obj_t self_in) { pin_obj_t *self = self_in; return MP_OBJ_NEW_SMALL_INT((mp_int_t)port_get_group_from_gpio_pin(self->pin)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_gpio_obj, pin_gpio); STATIC const mp_map_elem_t pin_locals_dict_table[] = { // instance methods { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pin_init_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_value), (mp_obj_t)&pin_value_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_low), (mp_obj_t)&pin_low_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_high), (mp_obj_t)&pin_high_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_name), (mp_obj_t)&pin_name_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_names), (mp_obj_t)&pin_names_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_pin), (mp_obj_t)&pin_pin_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_gpio), (mp_obj_t)&pin_gpio_obj }, // class methods { MP_OBJ_NEW_QSTR(MP_QSTR_mapper), (mp_obj_t)&pin_mapper_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_dict), (mp_obj_t)&pin_map_dict_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_debug), (mp_obj_t)&pin_debug_obj }, // class attributes { MP_OBJ_NEW_QSTR(MP_QSTR_board), (mp_obj_t)&pin_board_pins_obj_type }, { MP_OBJ_NEW_QSTR(MP_QSTR_cpu), (mp_obj_t)&pin_cpu_pins_obj_type }, // class constants { MP_OBJ_NEW_QSTR(MP_QSTR_IN), MP_OBJ_NEW_SMALL_INT(PORT_PIN_DIR_INPUT) }, { MP_OBJ_NEW_QSTR(MP_QSTR_OUT), MP_OBJ_NEW_SMALL_INT(PORT_PIN_DIR_OUTPUT) }, { MP_OBJ_NEW_QSTR(MP_QSTR_PULL_NONE), MP_OBJ_NEW_SMALL_INT(PORT_PIN_PULL_NONE) }, { MP_OBJ_NEW_QSTR(MP_QSTR_PULL_UP), MP_OBJ_NEW_SMALL_INT(PORT_PIN_PULL_UP) }, { MP_OBJ_NEW_QSTR(MP_QSTR_PULL_DOWN), MP_OBJ_NEW_SMALL_INT(PORT_PIN_PULL_DOWN) }, }; STATIC MP_DEFINE_CONST_DICT(pin_locals_dict, pin_locals_dict_table); const mp_obj_type_t pin_type = { { &mp_type_type }, .name = MP_QSTR_Pin, .print = pin_print, .make_new = pin_make_new, .call = pin_call, .locals_dict = (mp_obj_t)&pin_locals_dict, };