/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014, 2015 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "usbd_core.h" #include "usbd_desc.h" #include "usbd_cdc_msc_hid.h" #include "usbd_cdc_interface.h" #include "usbd_msc_interface.h" #include "usbd_hid_interface.h" #include "py/objstr.h" #include "py/runtime.h" #include "py/stream.h" #include "py/mperrno.h" #include "py/mphal.h" #include "bufhelper.h" #include "storage.h" #include "sdcard.h" #include "usb.h" #if MICROPY_HW_ENABLE_USB // Work out which USB device to use as the main one (the one with the REPL) #if !defined(MICROPY_HW_USB_MAIN_DEV) #if defined(MICROPY_HW_USB_FS) #define MICROPY_HW_USB_MAIN_DEV (USB_PHY_FS_ID) #elif defined(MICROPY_HW_USB_HS) #define MICROPY_HW_USB_MAIN_DEV (USB_PHY_HS_ID) #else #error Unable to determine proper MICROPY_HW_USB_MAIN_DEV to use #endif #endif STATIC void pyb_usb_vcp_init0(void); // this will be persistent across a soft-reset mp_uint_t pyb_usb_flags = 0; typedef struct _usb_device_t { uint32_t enabled; USBD_HandleTypeDef hUSBDDevice; usbd_cdc_msc_hid_state_t usbd_cdc_msc_hid_state; usbd_cdc_itf_t usbd_cdc_itf[MICROPY_HW_USB_CDC_NUM]; usbd_hid_itf_t usbd_hid_itf; } usb_device_t; usb_device_t usb_device = {0}; pyb_usb_storage_medium_t pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_NONE; // predefined hid mouse data STATIC const mp_obj_str_t pyb_usb_hid_mouse_desc_obj = { {&mp_type_bytes}, 0, // hash not valid USBD_HID_MOUSE_REPORT_DESC_SIZE, USBD_HID_MOUSE_ReportDesc, }; const mp_rom_obj_tuple_t pyb_usb_hid_mouse_obj = { {&mp_type_tuple}, 5, { MP_ROM_INT(1), // subclass: boot MP_ROM_INT(2), // protocol: mouse MP_ROM_INT(USBD_HID_MOUSE_MAX_PACKET), MP_ROM_INT(8), // polling interval: 8ms MP_ROM_PTR(&pyb_usb_hid_mouse_desc_obj), }, }; // predefined hid keyboard data STATIC const mp_obj_str_t pyb_usb_hid_keyboard_desc_obj = { {&mp_type_bytes}, 0, // hash not valid USBD_HID_KEYBOARD_REPORT_DESC_SIZE, USBD_HID_KEYBOARD_ReportDesc, }; const mp_rom_obj_tuple_t pyb_usb_hid_keyboard_obj = { {&mp_type_tuple}, 5, { MP_ROM_INT(1), // subclass: boot MP_ROM_INT(1), // protocol: keyboard MP_ROM_INT(USBD_HID_KEYBOARD_MAX_PACKET), MP_ROM_INT(8), // polling interval: 8ms MP_ROM_PTR(&pyb_usb_hid_keyboard_desc_obj), }, }; void pyb_usb_init0(void) { for (int i = 0; i < MICROPY_HW_USB_CDC_NUM; ++i) { usb_device.usbd_cdc_itf[i].attached_to_repl = false; } MP_STATE_PORT(pyb_hid_report_desc) = MP_OBJ_NULL; pyb_usb_vcp_init0(); } int pyb_usb_dev_detect(void) { if (usb_device.enabled) { return usb_device.hUSBDDevice.id; } #if MICROPY_HW_USB_FS && MICROPY_HW_USB_HS // Try to auto-detect which USB is connected by reading DP/DM pins for (int i = 0; i < 2; ++i) { mp_hal_pin_obj_t dp = i == 0 ? pyb_pin_USB_DP : pyb_pin_USB_HS_DP; mp_hal_pin_obj_t dm = i == 0 ? pyb_pin_USB_DM : pyb_pin_USB_HS_DM; mp_hal_pin_config(dp, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_UP, 0); mp_hal_pin_config(dm, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_UP, 0); int state = mp_hal_pin_read(dp) == 0 && mp_hal_pin_read(dm) == 0; mp_hal_pin_config(dp, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_NONE, 0); mp_hal_pin_config(dm, MP_HAL_PIN_MODE_INPUT, MP_HAL_PIN_PULL_NONE, 0); if (state) { // DP and DM pins are actively held low so assume USB is connected return i == 0 ? USB_PHY_FS_ID : USB_PHY_HS_ID; } } #endif return MICROPY_HW_USB_MAIN_DEV; } bool pyb_usb_dev_init(int dev_id, uint16_t vid, uint16_t pid, uint8_t mode, size_t msc_n, const void *msc_unit, USBD_HID_ModeInfoTypeDef *hid_info) { usb_device_t *usb_dev = &usb_device; if (!usb_dev->enabled) { // only init USB once in the device's power-lifetime // set up the USBD state USBD_HandleTypeDef *usbd = &usb_dev->hUSBDDevice; usbd->id = dev_id; usbd->dev_state = USBD_STATE_DEFAULT; usbd->pDesc = (USBD_DescriptorsTypeDef*)&USBD_Descriptors; usbd->pClass = &USBD_CDC_MSC_HID; usb_dev->usbd_cdc_msc_hid_state.pdev = usbd; for (int i = 0; i < MICROPY_HW_USB_CDC_NUM; ++i) { usb_dev->usbd_cdc_msc_hid_state.cdc[i] = &usb_dev->usbd_cdc_itf[i].base; } usb_dev->usbd_cdc_msc_hid_state.hid = &usb_dev->usbd_hid_itf.base; usbd->pClassData = &usb_dev->usbd_cdc_msc_hid_state; // configure the VID, PID and the USBD mode (interfaces it will expose) int cdc_only = (mode & USBD_MODE_IFACE_MASK) == USBD_MODE_CDC; USBD_SetVIDPIDRelease(&usb_dev->usbd_cdc_msc_hid_state, vid, pid, 0x0200, cdc_only); if (USBD_SelectMode(&usb_dev->usbd_cdc_msc_hid_state, mode, hid_info) != 0) { return false; } // Configure the MSC interface const void *msc_unit_default[1]; if (msc_n == 0) { msc_n = 1; msc_unit = msc_unit_default; switch (pyb_usb_storage_medium) { #if MICROPY_HW_ENABLE_SDCARD case PYB_USB_STORAGE_MEDIUM_SDCARD: msc_unit_default[0] = &pyb_sdcard_type; break; #endif default: msc_unit_default[0] = &pyb_flash_type; break; } } usbd_msc_init_lu(msc_n, msc_unit); USBD_MSC_RegisterStorage(&usb_dev->usbd_cdc_msc_hid_state, (USBD_StorageTypeDef*)&usbd_msc_fops); // start the USB device USBD_LL_Init(usbd, (mode & USBD_MODE_HIGH_SPEED) != 0); USBD_LL_Start(usbd); usb_dev->enabled = true; } return true; } void pyb_usb_dev_deinit(void) { usb_device_t *usb_dev = &usb_device; if (usb_dev->enabled) { USBD_Stop(&usb_dev->hUSBDDevice); USBD_DeInit(&usb_dev->hUSBDDevice); usb_dev->enabled = false; } } bool usb_vcp_is_enabled(void) { return usb_device.enabled; } int usb_vcp_recv_byte(uint8_t *c) { return usbd_cdc_rx(&usb_device.usbd_cdc_itf[0], c, 1, 0); } void usb_vcp_send_strn(const char *str, int len) { if (usb_device.enabled) { usbd_cdc_tx_always(&usb_device.usbd_cdc_itf[0], (const uint8_t*)str, len); } } usbd_cdc_itf_t *usb_vcp_get(int idx) { return &usb_device.usbd_cdc_itf[idx]; } /******************************************************************************/ // MicroPython bindings for USB /* Philosophy of USB driver and Python API: pyb.usb_mode(...) configures the USB on the board. The USB itself is not an entity, rather the interfaces are, and can be accessed by creating objects, such as pyb.USB_VCP() and pyb.USB_HID(). We have: pyb.usb_mode() # return the current usb mode pyb.usb_mode(None) # disable USB pyb.usb_mode('VCP') # enable with VCP interface pyb.usb_mode('VCP+MSC') # enable with VCP and MSC interfaces pyb.usb_mode('VCP+HID') # enable with VCP and HID, defaulting to mouse protocol pyb.usb_mode('VCP+HID', vid=0xf055, pid=0x9800) # specify VID and PID pyb.usb_mode('VCP+HID', hid=pyb.hid_mouse) pyb.usb_mode('VCP+HID', hid=pyb.hid_keyboard) pyb.usb_mode('VCP+HID', pid=0x1234, hid=(subclass, protocol, max_packet_len, polling_interval, report_desc)) vcp = pyb.USB_VCP() # get the VCP device for read/write hid = pyb.USB_HID() # get the HID device for write/poll Possible extensions: pyb.usb_mode('host', ...) pyb.usb_mode('OTG', ...) pyb.usb_mode(..., port=2) # for second USB port */ STATIC mp_obj_t pyb_usb_mode(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_mode, ARG_port, ARG_vid, ARG_pid, ARG_msc, ARG_hid, ARG_high_speed }; static const mp_arg_t allowed_args[] = { { MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_none_obj)} }, { MP_QSTR_port, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_vid, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = USBD_VID} }, { MP_QSTR_pid, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, { MP_QSTR_msc, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&mp_const_empty_tuple_obj)} }, { MP_QSTR_hid, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_PTR(&pyb_usb_hid_mouse_obj)} }, #if USBD_SUPPORT_HS_MODE { MP_QSTR_high_speed, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, #endif }; // fetch the current usb mode -> pyb.usb_mode() if (n_args == 0) { #if defined(USE_HOST_MODE) return MP_OBJ_NEW_QSTR(MP_QSTR_host); #else uint8_t mode = USBD_GetMode(&usb_device.usbd_cdc_msc_hid_state); switch (mode & USBD_MODE_IFACE_MASK) { case USBD_MODE_CDC: return MP_OBJ_NEW_QSTR(MP_QSTR_VCP); case USBD_MODE_MSC: return MP_OBJ_NEW_QSTR(MP_QSTR_MSC); case USBD_MODE_HID: return MP_OBJ_NEW_QSTR(MP_QSTR_HID); case USBD_MODE_CDC_MSC: return MP_OBJ_NEW_QSTR(MP_QSTR_VCP_plus_MSC); case USBD_MODE_CDC_HID: return MP_OBJ_NEW_QSTR(MP_QSTR_VCP_plus_HID); case USBD_MODE_MSC_HID: return MP_OBJ_NEW_QSTR(MP_QSTR_MSC_plus_HID); default: return mp_const_none; } #endif } // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // record the fact that the usb has been explicitly configured pyb_usb_flags |= PYB_USB_FLAG_USB_MODE_CALLED; // check if user wants to disable the USB if (args[ARG_mode].u_obj == mp_const_none) { // disable usb pyb_usb_dev_deinit(); return mp_const_none; } // get mode string const char *mode_str = mp_obj_str_get_str(args[ARG_mode].u_obj); #if defined(USE_HOST_MODE) // hardware configured for USB host mode if (strcmp(mode_str, "host") == 0) { pyb_usb_host_init(); } else { goto bad_mode; } #else // hardware configured for USB device mode // get the VID, PID and USB mode // note: PID=-1 means select PID based on mode // note: we support CDC as a synonym for VCP for backward compatibility uint16_t vid = args[ARG_vid].u_int; mp_int_t pid = args[ARG_pid].u_int; uint8_t mode; if (strcmp(mode_str, "CDC+MSC") == 0 || strcmp(mode_str, "VCP+MSC") == 0) { if (pid == -1) { pid = USBD_PID_CDC_MSC; } mode = USBD_MODE_CDC_MSC; #if MICROPY_HW_USB_CDC_NUM >= 2 } else if (strcmp(mode_str, "VCP+VCP") == 0) { if (pid == -1) { pid = USBD_PID_CDC2; } mode = USBD_MODE_CDC2; } else if (strcmp(mode_str, "VCP+VCP+MSC") == 0) { if (pid == -1) { pid = USBD_PID_CDC2_MSC; } mode = USBD_MODE_CDC2_MSC; #endif #if MICROPY_HW_USB_CDC_NUM >= 3 } else if (strcmp(mode_str, "3xVCP") == 0) { if (pid == -1) { pid = USBD_PID_CDC3; } mode = USBD_MODE_CDC3; } else if (strcmp(mode_str, "3xVCP+MSC") == 0) { if (pid == -1) { pid = USBD_PID_CDC3_MSC; } mode = USBD_MODE_CDC3_MSC; #endif } else if (strcmp(mode_str, "CDC+HID") == 0 || strcmp(mode_str, "VCP+HID") == 0) { if (pid == -1) { pid = USBD_PID_CDC_HID; } mode = USBD_MODE_CDC_HID; } else if (strcmp(mode_str, "CDC") == 0 || strcmp(mode_str, "VCP") == 0) { if (pid == -1) { pid = USBD_PID_CDC; } mode = USBD_MODE_CDC; } else if (strcmp(mode_str, "MSC") == 0) { if (pid == -1) { pid = USBD_PID_MSC; } mode = USBD_MODE_MSC; } else { goto bad_mode; } // Get MSC logical units size_t msc_n = 0; const void *msc_unit[USBD_MSC_MAX_LUN]; if (mode & USBD_MODE_IFACE_MSC) { mp_obj_t *items; mp_obj_get_array(args[ARG_msc].u_obj, &msc_n, &items); if (msc_n > USBD_MSC_MAX_LUN) { mp_raise_ValueError("too many logical units"); } for (size_t i = 0; i < msc_n; ++i) { mp_obj_type_t *type = mp_obj_get_type(items[i]); if (type == &pyb_flash_type #if MICROPY_HW_ENABLE_SDCARD || type == &pyb_sdcard_type #endif #if MICROPY_HW_ENABLE_MMCARD || type == &pyb_mmcard_type #endif ) { msc_unit[i] = type; } else { mp_raise_ValueError("unsupported logical unit"); } } } // get hid info if user selected such a mode USBD_HID_ModeInfoTypeDef hid_info; if (mode & USBD_MODE_IFACE_HID) { mp_obj_t *items; mp_obj_get_array_fixed_n(args[ARG_hid].u_obj, 5, &items); hid_info.subclass = mp_obj_get_int(items[0]); hid_info.protocol = mp_obj_get_int(items[1]); hid_info.max_packet_len = mp_obj_get_int(items[2]); hid_info.polling_interval = mp_obj_get_int(items[3]); mp_buffer_info_t bufinfo; mp_get_buffer_raise(items[4], &bufinfo, MP_BUFFER_READ); hid_info.report_desc = bufinfo.buf; hid_info.report_desc_len = bufinfo.len; // need to keep a copy of this so report_desc does not get GC'd MP_STATE_PORT(pyb_hid_report_desc) = items[4]; } #if USBD_SUPPORT_HS_MODE if (args[ARG_high_speed].u_bool) { mode |= USBD_MODE_HIGH_SPEED; } #endif // Work out which port/peripheral to use, either user supplied or auto detect int dev_id = args[ARG_port].u_int; if (dev_id == -1) { dev_id = pyb_usb_dev_detect(); } // init the USB device if (!pyb_usb_dev_init(dev_id, vid, pid, mode, msc_n, msc_unit, &hid_info)) { goto bad_mode; } #endif return mp_const_none; bad_mode: mp_raise_ValueError("bad USB mode"); } MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_mode_obj, 0, pyb_usb_mode); /******************************************************************************/ // MicroPython bindings for USB VCP /// \moduleref pyb /// \class USB_VCP - USB virtual comm port /// /// The USB_VCP class allows creation of an object representing the USB /// virtual comm port. It can be used to read and write data over USB to /// the connected host. typedef struct _pyb_usb_vcp_obj_t { mp_obj_base_t base; usbd_cdc_itf_t *cdc_itf; } pyb_usb_vcp_obj_t; const pyb_usb_vcp_obj_t pyb_usb_vcp_obj[MICROPY_HW_USB_CDC_NUM] = { {{&pyb_usb_vcp_type}, &usb_device.usbd_cdc_itf[0]}, #if MICROPY_HW_USB_CDC_NUM >= 2 {{&pyb_usb_vcp_type}, &usb_device.usbd_cdc_itf[1]}, #endif #if MICROPY_HW_USB_CDC_NUM >= 3 {{&pyb_usb_vcp_type}, &usb_device.usbd_cdc_itf[2]}, #endif }; STATIC void pyb_usb_vcp_init0(void) { // Activate USB_VCP(0) on dupterm slot 1 for the REPL MP_STATE_VM(dupterm_objs[1]) = MP_OBJ_FROM_PTR(&pyb_usb_vcp_obj[0]); usb_vcp_attach_to_repl(&pyb_usb_vcp_obj[0], true); } STATIC void pyb_usb_vcp_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { int id = ((pyb_usb_vcp_obj_t*)MP_OBJ_TO_PTR(self_in))->cdc_itf - &usb_device.usbd_cdc_itf[0]; mp_printf(print, "USB_VCP(%u)", id); } void usb_vcp_attach_to_repl(const pyb_usb_vcp_obj_t *self, bool attached) { self->cdc_itf->attached_to_repl = attached; } /// \classmethod \constructor() /// Create a new USB_VCP object. STATIC mp_obj_t pyb_usb_vcp_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 0, 1, false); // TODO raise exception if USB is not configured for VCP int id = (n_args == 0) ? 0 : mp_obj_get_int(args[0]); if (0 <= id && id < MICROPY_HW_USB_CDC_NUM) { return MP_OBJ_FROM_PTR(&pyb_usb_vcp_obj[id]); } else { mp_raise_ValueError(NULL); } } // init(*, flow=-1) STATIC mp_obj_t pyb_usb_vcp_init(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_flow }; static const mp_arg_t allowed_args[] = { { MP_QSTR_flow, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} }, }; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; pyb_usb_vcp_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); // flow control if (args[ARG_flow].u_int != -1) { self->cdc_itf->flow = args[ARG_flow].u_int; } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_vcp_init_obj, 1, pyb_usb_vcp_init); STATIC mp_obj_t pyb_usb_vcp_setinterrupt(mp_obj_t self_in, mp_obj_t int_chr_in) { mp_hal_set_interrupt_char(mp_obj_get_int(int_chr_in)); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_usb_vcp_setinterrupt_obj, pyb_usb_vcp_setinterrupt); STATIC mp_obj_t pyb_usb_vcp_isconnected(mp_obj_t self_in) { pyb_usb_vcp_obj_t *self = MP_OBJ_TO_PTR(self_in); return mp_obj_new_bool(usbd_cdc_is_connected(self->cdc_itf)); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_usb_vcp_isconnected_obj, pyb_usb_vcp_isconnected); // deprecated in favour of USB_VCP.isconnected STATIC mp_obj_t pyb_have_cdc(void) { return pyb_usb_vcp_isconnected(MP_OBJ_FROM_PTR(&pyb_usb_vcp_obj[0])); } MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc); /// \method any() /// Return `True` if any characters waiting, else `False`. STATIC mp_obj_t pyb_usb_vcp_any(mp_obj_t self_in) { pyb_usb_vcp_obj_t *self = MP_OBJ_TO_PTR(self_in); if (usbd_cdc_rx_num(self->cdc_itf) > 0) { return mp_const_true; } else { return mp_const_false; } } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_usb_vcp_any_obj, pyb_usb_vcp_any); /// \method send(data, *, timeout=5000) /// Send data over the USB VCP: /// /// - `data` is the data to send (an integer to send, or a buffer object). /// - `timeout` is the timeout in milliseconds to wait for the send. /// /// Return value: number of bytes sent. STATIC const mp_arg_t pyb_usb_vcp_send_args[] = { { MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; #define PYB_USB_VCP_SEND_NUM_ARGS MP_ARRAY_SIZE(pyb_usb_vcp_send_args) STATIC mp_obj_t pyb_usb_vcp_send(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { // parse args pyb_usb_vcp_obj_t *self = MP_OBJ_TO_PTR(args[0]); mp_arg_val_t vals[PYB_USB_VCP_SEND_NUM_ARGS]; mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_USB_VCP_SEND_NUM_ARGS, pyb_usb_vcp_send_args, vals); // get the buffer to send from mp_buffer_info_t bufinfo; uint8_t data[1]; pyb_buf_get_for_send(vals[0].u_obj, &bufinfo, data); // send the data int ret = usbd_cdc_tx(self->cdc_itf, bufinfo.buf, bufinfo.len, vals[1].u_int); return mp_obj_new_int(ret); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_vcp_send_obj, 1, pyb_usb_vcp_send); /// \method recv(data, *, timeout=5000) /// /// Receive data on the bus: /// /// - `data` can be an integer, which is the number of bytes to receive, /// or a mutable buffer, which will be filled with received bytes. /// - `timeout` is the timeout in milliseconds to wait for the receive. /// /// Return value: if `data` is an integer then a new buffer of the bytes received, /// otherwise the number of bytes read into `data` is returned. STATIC mp_obj_t pyb_usb_vcp_recv(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { // parse args pyb_usb_vcp_obj_t *self = MP_OBJ_TO_PTR(args[0]); mp_arg_val_t vals[PYB_USB_VCP_SEND_NUM_ARGS]; mp_arg_parse_all(n_args - 1, args + 1, kw_args, PYB_USB_VCP_SEND_NUM_ARGS, pyb_usb_vcp_send_args, vals); // get the buffer to receive into vstr_t vstr; mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &vstr); // receive the data int ret = usbd_cdc_rx(self->cdc_itf, (uint8_t*)vstr.buf, vstr.len, vals[1].u_int); // return the received data if (o_ret != MP_OBJ_NULL) { return mp_obj_new_int(ret); // number of bytes read into given buffer } else { vstr.len = ret; // set actual number of bytes read return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); // create a new buffer } } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_vcp_recv_obj, 1, pyb_usb_vcp_recv); mp_obj_t pyb_usb_vcp___exit__(size_t n_args, const mp_obj_t *args) { return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_usb_vcp___exit___obj, 4, 4, pyb_usb_vcp___exit__); STATIC const mp_rom_map_elem_t pyb_usb_vcp_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_usb_vcp_init_obj) }, { MP_ROM_QSTR(MP_QSTR_setinterrupt), MP_ROM_PTR(&pyb_usb_vcp_setinterrupt_obj) }, { MP_ROM_QSTR(MP_QSTR_isconnected), MP_ROM_PTR(&pyb_usb_vcp_isconnected_obj) }, { MP_ROM_QSTR(MP_QSTR_any), MP_ROM_PTR(&pyb_usb_vcp_any_obj) }, { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_usb_vcp_send_obj) }, { MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_usb_vcp_recv_obj) }, { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) }, { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) }, { MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj)}, { MP_ROM_QSTR(MP_QSTR_readlines), MP_ROM_PTR(&mp_stream_unbuffered_readlines_obj)}, { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) }, { MP_ROM_QSTR(MP_QSTR_close), MP_ROM_PTR(&mp_identity_obj) }, { MP_ROM_QSTR(MP_QSTR___del__), MP_ROM_PTR(&mp_identity_obj) }, { MP_ROM_QSTR(MP_QSTR___enter__), MP_ROM_PTR(&mp_identity_obj) }, { MP_ROM_QSTR(MP_QSTR___exit__), MP_ROM_PTR(&pyb_usb_vcp___exit___obj) }, // class constants { MP_ROM_QSTR(MP_QSTR_RTS), MP_ROM_INT(USBD_CDC_FLOWCONTROL_RTS) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_usb_vcp_locals_dict, pyb_usb_vcp_locals_dict_table); STATIC mp_uint_t pyb_usb_vcp_read(mp_obj_t self_in, void *buf, mp_uint_t size, int *errcode) { pyb_usb_vcp_obj_t *self = MP_OBJ_TO_PTR(self_in); int ret = usbd_cdc_rx(self->cdc_itf, (byte*)buf, size, 0); if (ret == 0) { // return EAGAIN error to indicate non-blocking *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } return ret; } STATIC mp_uint_t pyb_usb_vcp_write(mp_obj_t self_in, const void *buf, mp_uint_t size, int *errcode) { pyb_usb_vcp_obj_t *self = MP_OBJ_TO_PTR(self_in); if (self->cdc_itf->attached_to_repl) { usbd_cdc_tx_always(self->cdc_itf, (const byte*)buf, size); return size; } else { int ret = usbd_cdc_tx(self->cdc_itf, (const byte*)buf, size, 0); if (ret == 0) { // return EAGAIN error to indicate non-blocking *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } return ret; } } STATIC mp_uint_t pyb_usb_vcp_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { mp_uint_t ret; pyb_usb_vcp_obj_t *self = MP_OBJ_TO_PTR(self_in); if (request == MP_STREAM_POLL) { uintptr_t flags = arg; ret = 0; if ((flags & MP_STREAM_POLL_RD) && usbd_cdc_rx_num(self->cdc_itf) > 0) { ret |= MP_STREAM_POLL_RD; } if ((flags & MP_STREAM_POLL_WR) && usbd_cdc_tx_half_empty(self->cdc_itf)) { ret |= MP_STREAM_POLL_WR; } } else { *errcode = MP_EINVAL; ret = MP_STREAM_ERROR; } return ret; } STATIC const mp_stream_p_t pyb_usb_vcp_stream_p = { .read = pyb_usb_vcp_read, .write = pyb_usb_vcp_write, .ioctl = pyb_usb_vcp_ioctl, }; const mp_obj_type_t pyb_usb_vcp_type = { { &mp_type_type }, .name = MP_QSTR_USB_VCP, .print = pyb_usb_vcp_print, .make_new = pyb_usb_vcp_make_new, .getiter = mp_identity_getiter, .iternext = mp_stream_unbuffered_iter, .protocol = &pyb_usb_vcp_stream_p, .locals_dict = (mp_obj_dict_t*)&pyb_usb_vcp_locals_dict, }; /******************************************************************************/ // MicroPython bindings for USB HID typedef struct _pyb_usb_hid_obj_t { mp_obj_base_t base; usb_device_t *usb_dev; } pyb_usb_hid_obj_t; STATIC const pyb_usb_hid_obj_t pyb_usb_hid_obj = {{&pyb_usb_hid_type}, &usb_device}; STATIC mp_obj_t pyb_usb_hid_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { // check arguments mp_arg_check_num(n_args, n_kw, 0, 0, false); // TODO raise exception if USB is not configured for HID // return the USB HID object return MP_OBJ_FROM_PTR(&pyb_usb_hid_obj); } /// \method recv(data, *, timeout=5000) /// /// Receive data on the bus: /// /// - `data` can be an integer, which is the number of bytes to receive, /// or a mutable buffer, which will be filled with received bytes. /// - `timeout` is the timeout in milliseconds to wait for the receive. /// /// Return value: if `data` is an integer then a new buffer of the bytes received, /// otherwise the number of bytes read into `data` is returned. STATIC mp_obj_t pyb_usb_hid_recv(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_data, MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} }, }; // parse args pyb_usb_hid_obj_t *self = MP_OBJ_TO_PTR(args[0]); mp_arg_val_t vals[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, vals); // get the buffer to receive into vstr_t vstr; mp_obj_t o_ret = pyb_buf_get_for_recv(vals[0].u_obj, &vstr); // receive the data int ret = usbd_hid_rx(&self->usb_dev->usbd_hid_itf, vstr.len, (uint8_t*)vstr.buf, vals[1].u_int); // return the received data if (o_ret != MP_OBJ_NULL) { return mp_obj_new_int(ret); // number of bytes read into given buffer } else { vstr.len = ret; // set actual number of bytes read return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); // create a new buffer } } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_usb_hid_recv_obj, 1, pyb_usb_hid_recv); STATIC mp_obj_t pyb_usb_hid_send(mp_obj_t self_in, mp_obj_t report_in) { pyb_usb_hid_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_buffer_info_t bufinfo; byte temp_buf[8]; // get the buffer to send from // we accept either a byte array, or a tuple/list of integers if (!mp_get_buffer(report_in, &bufinfo, MP_BUFFER_READ)) { mp_obj_t *items; mp_obj_get_array(report_in, &bufinfo.len, &items); if (bufinfo.len > sizeof(temp_buf)) { mp_raise_ValueError("tuple/list too large for HID report; use bytearray instead"); } for (int i = 0; i < bufinfo.len; i++) { temp_buf[i] = mp_obj_get_int(items[i]); } bufinfo.buf = temp_buf; } // send the data if (USBD_OK == USBD_HID_SendReport(&self->usb_dev->usbd_hid_itf.base, bufinfo.buf, bufinfo.len)) { return mp_obj_new_int(bufinfo.len); } else { return mp_obj_new_int(0); } return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_usb_hid_send_obj, pyb_usb_hid_send); // deprecated in favour of USB_HID.send STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) { return pyb_usb_hid_send(MP_OBJ_FROM_PTR(&pyb_usb_hid_obj), arg); } MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report); STATIC const mp_rom_map_elem_t pyb_usb_hid_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_usb_hid_send_obj) }, { MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_usb_hid_recv_obj) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_usb_hid_locals_dict, pyb_usb_hid_locals_dict_table); STATIC mp_uint_t pyb_usb_hid_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) { pyb_usb_hid_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_uint_t ret; if (request == MP_STREAM_POLL) { uintptr_t flags = arg; ret = 0; if ((flags & MP_STREAM_POLL_RD) && usbd_hid_rx_num(&self->usb_dev->usbd_hid_itf) > 0) { ret |= MP_STREAM_POLL_RD; } if ((flags & MP_STREAM_POLL_WR) && USBD_HID_CanSendReport(&self->usb_dev->usbd_hid_itf.base)) { ret |= MP_STREAM_POLL_WR; } } else { *errcode = MP_EINVAL; ret = MP_STREAM_ERROR; } return ret; } STATIC const mp_stream_p_t pyb_usb_hid_stream_p = { .ioctl = pyb_usb_hid_ioctl, }; const mp_obj_type_t pyb_usb_hid_type = { { &mp_type_type }, .name = MP_QSTR_USB_HID, .make_new = pyb_usb_hid_make_new, .protocol = &pyb_usb_hid_stream_p, .locals_dict = (mp_obj_dict_t*)&pyb_usb_hid_locals_dict, }; /******************************************************************************/ // code for experimental USB OTG support #ifdef USE_HOST_MODE #include "led.h" #include "usbh_core.h" #include "usbh_usr.h" #include "usbh_hid_core.h" #include "usbh_hid_keybd.h" #include "usbh_hid_mouse.h" __ALIGN_BEGIN USBH_HOST USB_Host __ALIGN_END ; static int host_is_enabled = 0; void pyb_usb_host_init(void) { if (!host_is_enabled) { // only init USBH once in the device's power-lifetime /* Init Host Library */ USBH_Init(&USB_OTG_Core, USB_OTG_FS_CORE_ID, &USB_Host, &HID_cb, &USR_Callbacks); } host_is_enabled = 1; } void pyb_usb_host_process(void) { USBH_Process(&USB_OTG_Core, &USB_Host); } uint8_t usb_keyboard_key = 0; // TODO this is an ugly hack to get key presses uint pyb_usb_host_get_keyboard(void) { uint key = usb_keyboard_key; usb_keyboard_key = 0; return key; } void USR_MOUSE_Init(void) { led_state(4, 1); USB_OTG_BSP_mDelay(100); led_state(4, 0); } void USR_MOUSE_ProcessData(HID_MOUSE_Data_TypeDef *data) { led_state(4, 1); USB_OTG_BSP_mDelay(50); led_state(4, 0); } void USR_KEYBRD_Init(void) { led_state(4, 1); USB_OTG_BSP_mDelay(100); led_state(4, 0); } void USR_KEYBRD_ProcessData(uint8_t pbuf) { led_state(4, 1); USB_OTG_BSP_mDelay(50); led_state(4, 0); usb_keyboard_key = pbuf; } #endif // USE_HOST_MODE #endif // MICROPY_HW_ENABLE_USB