/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2019 Damien P. George * Copyright (c) 2015 Galen Hazelwood * Copyright (c) 2015-2017 Paul Sokolovsky * Copyright (c) 2020 Lucian Copeland for Adafruit Industries * Copyright (c) 2022 Jeff Epler for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/socketpool/Socket.h" #include "py/gc.h" #include "py/mperrno.h" #include "py/mphal.h" #include "py/runtime.h" #include "py/stream.h" #include "shared-bindings/socketpool/SocketPool.h" #include "shared/runtime/interrupt_char.h" #include "shared/netutils/netutils.h" #include "supervisor/port.h" #include "supervisor/shared/tick.h" #include "supervisor/workflow.h" #include "lwip/dns.h" #include "lwip/err.h" #include "lwip/igmp.h" #include "lwip/init.h" #include "lwip/netdb.h" #include "lwip/priv/tcp_priv.h" #include "lwip/raw.h" #include "lwip/sys.h" #include "lwip/tcp.h" #include "lwip/timeouts.h" #include "lwip/udp.h" #define MICROPY_PY_LWIP_SOCK_RAW (1) #if 0 // print debugging info #define DEBUG_printf DEBUG_printf #else // don't print debugging info #define DEBUG_printf(...) (void)0 #endif // Timeout between closing a TCP socket and doing a tcp_abort on that // socket, if the connection isn't closed cleanly in that time. #define MICROPY_PY_LWIP_TCP_CLOSE_TIMEOUT_MS (10000) // All socket options should be globally distinct, // because we ignore option levels for efficiency. #define IP_ADD_MEMBERSHIP 0x400 #define IP_DROP_MEMBERSHIP 0x401 /******************************************************************************/ // Table to convert lwIP err_t codes to socket errno codes, from the lwIP // socket API. // Extension to lwIP error codes // Matches lwIP 2.0.3 #undef _ERR_BADF #define _ERR_BADF -17 static const int error_lookup_table[] = { 0, /* ERR_OK 0 No error, everything OK */ MP_ENOMEM, /* ERR_MEM -1 Out of memory error */ MP_ENOBUFS, /* ERR_BUF -2 Buffer error */ MP_EWOULDBLOCK, /* ERR_TIMEOUT -3 Timeout */ MP_EHOSTUNREACH, /* ERR_RTE -4 Routing problem */ MP_EINPROGRESS, /* ERR_INPROGRESS -5 Operation in progress */ MP_EINVAL, /* ERR_VAL -6 Illegal value */ MP_EWOULDBLOCK, /* ERR_WOULDBLOCK -7 Operation would block */ MP_EADDRINUSE, /* ERR_USE -8 Address in use */ MP_EALREADY, /* ERR_ALREADY -9 Already connecting */ MP_EALREADY, /* ERR_ISCONN -10 Conn already established */ MP_ENOTCONN, /* ERR_CONN -11 Not connected */ -1, /* ERR_IF -12 Low-level netif error */ MP_ECONNABORTED, /* ERR_ABRT -13 Connection aborted */ MP_ECONNRESET, /* ERR_RST -14 Connection reset */ MP_ENOTCONN, /* ERR_CLSD -15 Connection closed */ MP_EIO, /* ERR_ARG -16 Illegal argument. */ MP_EBADF, /* _ERR_BADF -17 Closed socket (null pcb) */ }; /*******************************************************************************/ // The socket object provided by lwip.socket. #define MOD_NETWORK_AF_INET (SOCKETPOOL_AF_INET) #define MOD_NETWORK_AF_INET6 (SOCKETPOOL_AF_INET6) #define MOD_NETWORK_SOCK_STREAM (SOCKETPOOL_SOCK_STREAM) #define MOD_NETWORK_SOCK_DGRAM (SOCKETPOOL_SOCK_DGRAM) #define MOD_NETWORK_SOCK_RAW (SOCKETPOOL_SOCK_RAW) #define MAX_SOCKETS (8) static inline void poll_sockets(void) { #ifdef MICROPY_EVENT_POLL_HOOK MICROPY_EVENT_POLL_HOOK; #else RUN_BACKGROUND_TASKS; if (MP_STATE_THREAD(mp_pending_exception) != MP_OBJ_NULL) { mp_handle_pending(true); } mp_hal_delay_ms(1); #endif } STATIC struct tcp_pcb *volatile *lwip_socket_incoming_array(socketpool_socket_obj_t *socket) { if (socket->incoming.connection.alloc == 0) { return &socket->incoming.connection.tcp.item; } else { return &socket->incoming.connection.tcp.array[0]; } } STATIC void lwip_socket_free_incoming(socketpool_socket_obj_t *socket) { bool socket_is_listener = socket->type == MOD_NETWORK_SOCK_STREAM && socket->pcb.tcp->state == LISTEN; if (!socket_is_listener) { if (socket->incoming.pbuf != NULL) { pbuf_free(socket->incoming.pbuf); socket->incoming.pbuf = NULL; } } else { uint8_t alloc = socket->incoming.connection.alloc; struct tcp_pcb *volatile *tcp_array = lwip_socket_incoming_array(socket); for (uint8_t i = 0; i < alloc; ++i) { // Deregister callback and abort if (tcp_array[i] != NULL) { tcp_poll(tcp_array[i], NULL, 0); tcp_abort(tcp_array[i]); tcp_array[i] = NULL; } } } } /*******************************************************************************/ // Callback functions for the lwIP raw API. static inline void exec_user_callback(socketpool_socket_obj_t *socket) { #if 0 if (socket->callback != MP_OBJ_NULL) { // Schedule the user callback to execute outside the lwIP context mp_sched_schedule(socket->callback, MP_OBJ_FROM_PTR(socket)); } #endif supervisor_workflow_request_background(); } #if MICROPY_PY_LWIP_SOCK_RAW // Callback for incoming raw packets. #if LWIP_VERSION_MAJOR < 2 STATIC u8_t _lwip_raw_incoming(void *arg, struct raw_pcb *pcb, struct pbuf *p, ip_addr_t *addr) #else STATIC u8_t _lwip_raw_incoming(void *arg, struct raw_pcb *pcb, struct pbuf *p, const ip_addr_t *addr) #endif { socketpool_socket_obj_t *socket = (socketpool_socket_obj_t *)arg; if (socket->incoming.pbuf != NULL) { pbuf_free(p); } else { socket->incoming.pbuf = p; memcpy(&socket->peer, addr, sizeof(socket->peer)); } return 1; // we ate the packet } #endif // Callback for incoming UDP packets. We simply stash the packet and the source address, // in case we need it for recvfrom. #if LWIP_VERSION_MAJOR < 2 STATIC void _lwip_udp_incoming(void *arg, struct udp_pcb *upcb, struct pbuf *p, ip_addr_t *addr, u16_t port) #else STATIC void _lwip_udp_incoming(void *arg, struct udp_pcb *upcb, struct pbuf *p, const ip_addr_t *addr, u16_t port) #endif { socketpool_socket_obj_t *socket = (socketpool_socket_obj_t *)arg; if (socket->incoming.pbuf != NULL) { // That's why they call it "unreliable". No room in the inn, drop the packet. pbuf_free(p); } else { socket->incoming.pbuf = p; socket->peer_port = (mp_uint_t)port; memcpy(&socket->peer, addr, sizeof(socket->peer)); } } // Callback for general tcp errors. STATIC void _lwip_tcp_error(void *arg, err_t err) { socketpool_socket_obj_t *socket = (socketpool_socket_obj_t *)arg; // Free any incoming buffers or connections that are stored lwip_socket_free_incoming(socket); // Pass the error code back via the connection variable. socket->state = err; // If we got here, the lwIP stack either has deallocated or will deallocate the pcb. socket->pcb.tcp = NULL; } // Callback for tcp connection requests. Error code err is unused. (See tcp.h) STATIC err_t _lwip_tcp_connected(void *arg, struct tcp_pcb *tpcb, err_t err) { socketpool_socket_obj_t *socket = (socketpool_socket_obj_t *)arg; socket->state = STATE_CONNECTED; return ERR_OK; } // Handle errors (eg connection aborted) on TCP PCBs that have been put on the // accept queue but are not yet actually accepted. STATIC void _lwip_tcp_err_unaccepted(void *arg, err_t err) { struct tcp_pcb *pcb = (struct tcp_pcb *)arg; // The ->connected entry is repurposed to store the parent socket; this is safe // because it's only ever used by lwIP if tcp_connect is called on the TCP PCB. socketpool_socket_obj_t *socket = (socketpool_socket_obj_t *)pcb->connected; // Array is not volatile because thiss callback is executed within the lwIP context uint8_t alloc = socket->incoming.connection.alloc; struct tcp_pcb **tcp_array = (struct tcp_pcb **)lwip_socket_incoming_array(socket); // Search for PCB on the accept queue of the parent socket struct tcp_pcb **shift_down = NULL; uint8_t i = socket->incoming.connection.iget; do { if (shift_down == NULL) { if (tcp_array[i] == pcb) { shift_down = &tcp_array[i]; } } else { *shift_down = tcp_array[i]; shift_down = &tcp_array[i]; } if (++i >= alloc) { i = 0; } } while (i != socket->incoming.connection.iput); // PCB found in queue, remove it if (shift_down != NULL) { *shift_down = NULL; socket->incoming.connection.iput = shift_down - tcp_array; } } // By default, a child socket of listen socket is created with recv // handler which discards incoming pbuf's. We don't want to do that, // so set this handler which requests lwIP to keep pbuf's and deliver // them later. We cannot cache pbufs in child socket on Python side, // until it is created in accept(). STATIC err_t _lwip_tcp_recv_unaccepted(void *arg, struct tcp_pcb *pcb, struct pbuf *p, err_t err) { return ERR_BUF; } // Callback for incoming tcp connections. STATIC err_t _lwip_tcp_accept(void *arg, struct tcp_pcb *newpcb, err_t err) { // err can be ERR_MEM to notify us that there was no memory for an incoming connection if (err != ERR_OK) { return ERR_OK; } socketpool_socket_obj_t *socket = (socketpool_socket_obj_t *)arg; tcp_recv(newpcb, _lwip_tcp_recv_unaccepted); // Search for an empty slot to store the new connection struct tcp_pcb *volatile *slot = &lwip_socket_incoming_array(socket)[socket->incoming.connection.iput]; if (*slot == NULL) { // Have an empty slot to store waiting connection *slot = newpcb; if (++socket->incoming.connection.iput >= socket->incoming.connection.alloc) { socket->incoming.connection.iput = 0; } // Schedule user accept callback exec_user_callback(socket); // Set the error callback to handle the case of a dropped connection before we // have a chance to take it off the accept queue. // The ->connected entry is repurposed to store the parent socket; this is safe // because it's only ever used by lwIP if tcp_connect is called on the TCP PCB. newpcb->connected = (void *)socket; tcp_arg(newpcb, newpcb); tcp_err(newpcb, _lwip_tcp_err_unaccepted); return ERR_OK; } DEBUG_printf("_lwip_tcp_accept: No room to queue pcb waiting for accept\n"); return ERR_BUF; } // Callback for inbound tcp packets. STATIC err_t _lwip_tcp_recv(void *arg, struct tcp_pcb *tcpb, struct pbuf *p, err_t err) { socketpool_socket_obj_t *socket = (socketpool_socket_obj_t *)arg; if (p == NULL) { // Other side has closed connection. DEBUG_printf("_lwip_tcp_recv[%p]: other side closed connection\n", socket); socket->state = STATE_PEER_CLOSED; exec_user_callback(socket); return ERR_OK; } if (socket->incoming.pbuf == NULL) { socket->incoming.pbuf = p; } else { #ifdef SOCKET_SINGLE_PBUF return ERR_BUF; #else pbuf_cat(socket->incoming.pbuf, p); #endif } exec_user_callback(socket); return ERR_OK; } /*******************************************************************************/ // Functions for socket send/receive operations. Socket send/recv and friends call // these to do the work. // Helper function for send/sendto to handle raw/UDP packets. STATIC mp_uint_t lwip_raw_udp_send(socketpool_socket_obj_t *socket, const byte *buf, mp_uint_t len, ip_addr_t *dest, uint32_t port, int *_errno) { if (len > 0xffff) { // Any packet that big is probably going to fail the pbuf_alloc anyway, but may as well try len = 0xffff; } MICROPY_PY_LWIP_ENTER struct pbuf *p = pbuf_alloc(PBUF_TRANSPORT, len, PBUF_RAM); if (p == NULL) { MICROPY_PY_LWIP_EXIT *_errno = MP_ENOMEM; return -1; } memcpy(p->payload, buf, len); err_t err; if (dest == NULL) { #if MICROPY_PY_LWIP_SOCK_RAW if (socket->type == MOD_NETWORK_SOCK_RAW) { err = raw_send(socket->pcb.raw, p); } else #endif { err = udp_send(socket->pcb.udp, p); } } else { #if MICROPY_PY_LWIP_SOCK_RAW if (socket->type == MOD_NETWORK_SOCK_RAW) { err = raw_sendto(socket->pcb.raw, p, dest); } else #endif { err = udp_sendto(socket->pcb.udp, p, dest, port); } } pbuf_free(p); MICROPY_PY_LWIP_EXIT // udp_sendto can return 1 on occasion for ESP8266 port. It's not known why // but it seems that the send actually goes through without error in this case. // So we treat such cases as a success until further investigation. if (err != ERR_OK && err != 1) { *_errno = error_lookup_table[-err]; return -1; } return len; } // Helper function for recv/recvfrom to handle raw/UDP packets STATIC mp_uint_t lwip_raw_udp_receive(socketpool_socket_obj_t *socket, byte *buf, mp_uint_t len, byte *ip, uint32_t *port, int *_errno) { if (socket->incoming.pbuf == NULL) { if (socket->timeout == 0) { // Non-blocking socket. *_errno = MP_EAGAIN; return -1; } // Wait for data to arrive on UDP socket. mp_uint_t start = mp_hal_ticks_ms(); while (socket->incoming.pbuf == NULL) { if (socket->timeout != (unsigned)-1 && mp_hal_ticks_ms() - start > socket->timeout) { *_errno = MP_ETIMEDOUT; return -1; } poll_sockets(); } } if (ip != NULL) { memcpy(ip, &socket->peer, sizeof(socket->peer)); *port = socket->peer_port; } struct pbuf *p = socket->incoming.pbuf; MICROPY_PY_LWIP_ENTER u16_t result = pbuf_copy_partial(p, buf, ((p->tot_len > len) ? len : p->tot_len), 0); pbuf_free(p); socket->incoming.pbuf = NULL; MICROPY_PY_LWIP_EXIT return (mp_uint_t)result; } // For use in stream virtual methods #define STREAM_ERROR_CHECK(socket) \ if (socket->state < 0) { \ *_errno = error_lookup_table[-socket->state]; \ return MP_STREAM_ERROR; \ } \ assert(socket->pcb.tcp); // Version of above for use when lock is held #define STREAM_ERROR_CHECK_WITH_LOCK(socket) \ if (socket->state < 0) { \ *_errno = error_lookup_table[-socket->state]; \ MICROPY_PY_LWIP_EXIT \ return MP_STREAM_ERROR; \ } \ assert(socket->pcb.tcp); // Helper function for send/sendto to handle TCP packets STATIC mp_uint_t lwip_tcp_send(socketpool_socket_obj_t *socket, const byte *buf, mp_uint_t len, int *_errno) { // Check for any pending errors STREAM_ERROR_CHECK(socket); MICROPY_PY_LWIP_ENTER u16_t available = tcp_sndbuf(socket->pcb.tcp); if (available == 0) { // Non-blocking socket if (socket->timeout == 0) { MICROPY_PY_LWIP_EXIT *_errno = MP_EAGAIN; return MP_STREAM_ERROR; } mp_uint_t start = mp_hal_ticks_ms(); // Assume that STATE_PEER_CLOSED may mean half-closed connection, where peer closed it // sending direction, but not receiving. Consequently, check for both STATE_CONNECTED // and STATE_PEER_CLOSED as normal conditions and still waiting for buffers to be sent. // If peer fully closed socket, we would have socket->state set to ERR_RST (connection // reset) by error callback. // Avoid sending too small packets, so wait until at least 16 bytes available while (socket->state >= STATE_CONNECTED && (available = tcp_sndbuf(socket->pcb.tcp)) < 16) { MICROPY_PY_LWIP_EXIT if (socket->timeout != (unsigned)-1 && mp_hal_ticks_ms() - start > socket->timeout) { *_errno = MP_ETIMEDOUT; return MP_STREAM_ERROR; } poll_sockets(); MICROPY_PY_LWIP_REENTER } // While we waited, something could happen STREAM_ERROR_CHECK_WITH_LOCK(socket); } u16_t write_len = MIN(available, len); // If tcp_write returns ERR_MEM then there's currently not enough memory to // queue the write, so wait and keep trying until it succeeds (with 10s limit). // Note: if the socket is non-blocking then this code will actually block until // there's enough memory to do the write, but by this stage we have already // committed to being able to write the data. err_t err; for (int i = 0; i < 200; ++i) { err = tcp_write(socket->pcb.tcp, buf, write_len, TCP_WRITE_FLAG_COPY); if (err != ERR_MEM) { break; } if (err == ERR_MEM && write_len > TCP_MSS) { // Decreasing the amount sent to the next lower number of MSS write_len = (write_len - 1) / TCP_MSS * TCP_MSS; continue; } err = tcp_output(socket->pcb.tcp); if (err != ERR_OK) { break; } MICROPY_PY_LWIP_EXIT mp_hal_delay_ms(50); MICROPY_PY_LWIP_REENTER } // If the output buffer is getting full then send the data to the lower layers if (err == ERR_OK && tcp_sndbuf(socket->pcb.tcp) < TCP_SND_BUF / 4) { err = tcp_output(socket->pcb.tcp); } MICROPY_PY_LWIP_EXIT if (err != ERR_OK) { *_errno = error_lookup_table[-err]; return MP_STREAM_ERROR; } return write_len; } // Helper function for recv/recvfrom to handle TCP packets STATIC mp_uint_t lwip_tcp_receive(socketpool_socket_obj_t *socket, byte *buf, mp_uint_t len, int *_errno) { // Check for any pending errors STREAM_ERROR_CHECK(socket); if (socket->incoming.pbuf == NULL) { // Non-blocking socket if (socket->timeout == 0) { if (socket->state == STATE_PEER_CLOSED) { return 0; } *_errno = MP_EAGAIN; return -1; } mp_uint_t start = mp_hal_ticks_ms(); while (socket->state == STATE_CONNECTED && socket->incoming.pbuf == NULL) { if (socket->timeout != (unsigned)-1 && mp_hal_ticks_ms() - start > socket->timeout) { *_errno = MP_ETIMEDOUT; return -1; } poll_sockets(); } if (socket->state == STATE_PEER_CLOSED) { if (socket->incoming.pbuf == NULL) { // socket closed and no data left in buffer return 0; } } else if (socket->state != STATE_CONNECTED) { if (socket->state >= STATE_NEW) { *_errno = MP_ENOTCONN; } else { *_errno = error_lookup_table[-socket->state]; } return -1; } } MICROPY_PY_LWIP_ENTER assert(socket->pcb.tcp != NULL); struct pbuf *p = socket->incoming.pbuf; mp_uint_t remaining = p->len - socket->recv_offset; if (len > remaining) { len = remaining; } memcpy(buf, (byte *)p->payload + socket->recv_offset, len); remaining -= len; if (remaining == 0) { socket->incoming.pbuf = p->next; // If we don't ref here, free() will free the entire chain, // if we ref, it does what we need: frees 1st buf, and decrements // next buf's refcount back to 1. pbuf_ref(p->next); pbuf_free(p); socket->recv_offset = 0; } else { socket->recv_offset += len; } tcp_recved(socket->pcb.tcp, len); MICROPY_PY_LWIP_EXIT return len; } STATIC socketpool_socket_obj_t *open_socket_objs[MAX_SOCKETS]; STATIC bool user_socket[MAX_SOCKETS]; void socket_user_reset(void) { for (size_t i = 0; i < MP_ARRAY_SIZE(open_socket_objs); i++) { if (open_socket_objs[i] && user_socket[i]) { socketpool_socket_close(open_socket_objs[i]); open_socket_objs[i] = NULL; user_socket[i] = false; } } } // The writes below send an event to the socket select task so that it redoes the // select with the new open socket set. STATIC bool register_open_socket(socketpool_socket_obj_t *obj) { for (size_t i = 0; i < MP_ARRAY_SIZE(open_socket_objs); i++) { if (!open_socket_objs[i]) { open_socket_objs[i] = obj; DEBUG_printf("register_open_socket(%p) -> %d\n", obj, i); user_socket[i] = false; return true; } } DEBUG_printf("register_open_socket(%p) fails due to full table\n", obj); return false; } STATIC void unregister_open_socket(socketpool_socket_obj_t *obj) { for (size_t i = 0; i < MP_ARRAY_SIZE(open_socket_objs); i++) { if (open_socket_objs[i] == obj) { DEBUG_printf("unregister_open_socket(%p) clears %d\n", obj, i); open_socket_objs[i] = NULL; user_socket[i] = false; return; } } DEBUG_printf("unregister_open_socket(%p) fails due to missing entry\n", obj); } STATIC void mark_user_socket(socketpool_socket_obj_t *obj) { for (size_t i = 0; i < MP_ARRAY_SIZE(open_socket_objs); i++) { if (open_socket_objs[i] == obj) { DEBUG_printf("mark_user_socket(%p) -> %d\n", obj, i); user_socket[i] = true; return; } } DEBUG_printf("mark_user_socket(%p) fails due to missing entry\n", obj); } bool socketpool_socket(socketpool_socketpool_obj_t *self, socketpool_socketpool_addressfamily_t family, socketpool_socketpool_sock_t type, socketpool_socket_obj_t *socket) { if (!register_open_socket(socket)) { DEBUG_printf("collecting garbage to open socket\n"); gc_collect(); if (!register_open_socket(socket)) { return false; } } socket->timeout = -1; socket->recv_offset = 0; socket->domain = SOCKETPOOL_AF_INET; socket->type = type; socket->callback = MP_OBJ_NULL; socket->state = STATE_NEW; switch (socket->type) { case SOCKETPOOL_SOCK_STREAM: socket->pcb.tcp = tcp_new(); socket->incoming.connection.alloc = 0; socket->incoming.connection.tcp.item = NULL; break; case SOCKETPOOL_SOCK_DGRAM: socket->pcb.udp = udp_new(); socket->incoming.pbuf = NULL; break; #if MICROPY_PY_LWIP_SOCK_RAW case SOCKETPOOL_SOCK_RAW: { socket->pcb.raw = raw_new(0); break; } #endif default: return false; } if (socket->pcb.tcp == NULL) { return false; } switch (socket->type) { case MOD_NETWORK_SOCK_STREAM: { // Register the socket object as our callback argument. tcp_arg(socket->pcb.tcp, (void *)socket); break; } case MOD_NETWORK_SOCK_DGRAM: { socket->state = STATE_ACTIVE_UDP; // Register our receive callback now. Since UDP sockets don't require binding or connection // before use, there's no other good time to do it. udp_recv(socket->pcb.udp, _lwip_udp_incoming, (void *)socket); break; } #if MICROPY_PY_LWIP_SOCK_RAW case MOD_NETWORK_SOCK_RAW: { // Register our receive callback now. Since raw sockets don't require binding or connection // before use, there's no other good time to do it. raw_recv(socket->pcb.raw, _lwip_raw_incoming, (void *)socket); break; } #endif } return true; } socketpool_socket_obj_t *common_hal_socketpool_socket(socketpool_socketpool_obj_t *self, socketpool_socketpool_addressfamily_t family, socketpool_socketpool_sock_t type) { if (family != SOCKETPOOL_AF_INET) { mp_raise_NotImplementedError(translate("Only IPv4 sockets supported")); } socketpool_socket_obj_t *socket = m_new_obj_with_finaliser(socketpool_socket_obj_t); socket->base.type = &socketpool_socket_type; if (!socketpool_socket(self, family, type, socket)) { mp_raise_RuntimeError(translate("Out of sockets")); } mark_user_socket(socket); return socket; } int socketpool_socket_accept(socketpool_socket_obj_t *self, uint8_t *ip, uint32_t *port, socketpool_socket_obj_t *accepted) { if (self->type != MOD_NETWORK_SOCK_STREAM) { return -MP_EOPNOTSUPP; } if (common_hal_socketpool_socket_get_closed(self)) { return -MP_EBADF; } MICROPY_PY_LWIP_ENTER if (self->pcb.tcp == NULL) { MICROPY_PY_LWIP_EXIT return -MP_EBADF; } // I need to do this because "tcp_accepted", later, is a macro. struct tcp_pcb *listener = self->pcb.tcp; if (listener->state != LISTEN) { MICROPY_PY_LWIP_EXIT return -MP_EINVAL; } // accept incoming connection struct tcp_pcb *volatile *incoming_connection = &lwip_socket_incoming_array(self)[self->incoming.connection.iget]; if (*incoming_connection == NULL) { if (self->timeout == 0) { MICROPY_PY_LWIP_EXIT return -MP_EAGAIN; } else if (self->timeout != (unsigned)-1) { mp_uint_t retries = self->timeout / 100; while (*incoming_connection == NULL && !mp_hal_is_interrupted()) { MICROPY_PY_LWIP_EXIT if (retries-- == 0) { return -MP_ETIMEDOUT; } mp_hal_delay_ms(100); MICROPY_PY_LWIP_REENTER } } else { while (*incoming_connection == NULL && !mp_hal_is_interrupted()) { MICROPY_PY_LWIP_EXIT poll_sockets(); MICROPY_PY_LWIP_REENTER } } } if (*incoming_connection == NULL) { // We were interrupted. return 0; } // Close the accepted socket because we have another we accepted. if (!common_hal_socketpool_socket_get_closed(accepted)) { common_hal_socketpool_socket_close(accepted); } // We get a new pcb handle... accepted->pcb.tcp = *incoming_connection; if (++self->incoming.connection.iget >= self->incoming.connection.alloc) { self->incoming.connection.iget = 0; } *incoming_connection = NULL; // ...and set up the new socket for it. accepted->domain = MOD_NETWORK_AF_INET; accepted->type = MOD_NETWORK_SOCK_STREAM; accepted->incoming.pbuf = NULL; accepted->timeout = self->timeout; accepted->state = STATE_CONNECTED; accepted->recv_offset = 0; accepted->callback = MP_OBJ_NULL; tcp_arg(accepted->pcb.tcp, (void *)accepted); tcp_err(accepted->pcb.tcp, _lwip_tcp_error); tcp_recv(accepted->pcb.tcp, _lwip_tcp_recv); tcp_accepted(listener); MICROPY_PY_LWIP_EXIT // output values memcpy(ip, &(accepted->pcb.tcp->remote_ip), NETUTILS_IPV4ADDR_BUFSIZE); *port = (mp_uint_t)accepted->pcb.tcp->remote_port; return 1; } socketpool_socket_obj_t *common_hal_socketpool_socket_accept(socketpool_socket_obj_t *socket, uint8_t *ip, uint32_t *port) { // Create new socket object, do it here because we must not raise an out-of-memory // exception when the LWIP concurrency lock is held socketpool_socket_obj_t *accepted = m_new_ll_obj_with_finaliser(socketpool_socket_obj_t); socketpool_socket_reset(accepted); int ret = socketpool_socket_accept(socket, ip, port, accepted); if (ret <= 0) { m_del_obj(socketpool_socket_obj_t, accepted); if (ret == 0) { // Interrupted. return mp_const_none; } mp_raise_OSError(-ret); } DEBUG_printf("registering socket in socketpool_socket_accept()\n"); if (!register_open_socket(accepted)) { DEBUG_printf("collecting garbage to open socket\n"); gc_collect(); if (!register_open_socket(accepted)) { mp_raise_RuntimeError(translate("Out of sockets")); } } mark_user_socket(accepted); return MP_OBJ_FROM_PTR(accepted); } bool common_hal_socketpool_socket_bind(socketpool_socket_obj_t *socket, const char *host, size_t hostlen, uint32_t port) { // get address ip_addr_t bind_addr; const ip_addr_t *bind_addr_ptr = &bind_addr; if (hostlen > 0) { socketpool_resolve_host_raise(socket->pool, host, &bind_addr); } else { bind_addr_ptr = IP_ANY_TYPE; } ip_set_option(socket->pcb.ip, SOF_REUSEADDR); err_t err = ERR_ARG; switch (socket->type) { case MOD_NETWORK_SOCK_STREAM: { err = tcp_bind(socket->pcb.tcp, bind_addr_ptr, port); break; } case MOD_NETWORK_SOCK_DGRAM: { err = udp_bind(socket->pcb.udp, bind_addr_ptr, port); break; } } if (err != ERR_OK) { mp_raise_OSError(error_lookup_table[-err]); } return mp_const_none; } STATIC err_t _lwip_tcp_close_poll(void *arg, struct tcp_pcb *pcb) { // Connection has not been cleanly closed so just abort it to free up memory tcp_poll(pcb, NULL, 0); tcp_abort(pcb); return ERR_OK; } void socketpool_socket_close(socketpool_socket_obj_t *socket) { unregister_open_socket(socket); MICROPY_PY_LWIP_ENTER if (socket->pcb.tcp == NULL) { // already closed MICROPY_PY_LWIP_EXIT return; } lwip_socket_free_incoming(socket); switch (socket->type) { case SOCKETPOOL_SOCK_STREAM: { // Deregister callback (pcb.tcp is set to NULL below so must deregister now) tcp_arg(socket->pcb.tcp, NULL); if (socket->pcb.tcp->state != LISTEN) { tcp_err(socket->pcb.tcp, NULL); tcp_recv(socket->pcb.tcp, NULL); // Schedule a callback to abort the connection if it's not cleanly closed after // the given timeout. The callback must be set before calling tcp_close since // the latter may free the pcb; if it doesn't then the callback will be active. tcp_poll(socket->pcb.tcp, _lwip_tcp_close_poll, MICROPY_PY_LWIP_TCP_CLOSE_TIMEOUT_MS / 500); } if (tcp_close(socket->pcb.tcp) != ERR_OK) { DEBUG_printf("lwip_close: had to call tcp_abort()\n"); tcp_abort(socket->pcb.tcp); } break; } case SOCKETPOOL_SOCK_DGRAM: udp_recv(socket->pcb.udp, NULL, NULL); udp_remove(socket->pcb.udp); break; #if MICROPY_PY_LWIP_SOCK_RAW case SOCKETPOOL_SOCK_RAW: raw_recv(socket->pcb.raw, NULL, NULL); raw_remove(socket->pcb.raw); break; #endif } socket->pcb.tcp = NULL; socket->state = _ERR_BADF; MICROPY_PY_LWIP_EXIT } void common_hal_socketpool_socket_close(socketpool_socket_obj_t *socket) { socketpool_socket_close(socket); } void common_hal_socketpool_socket_connect(socketpool_socket_obj_t *socket, const char *host, size_t hostlen, uint32_t port) { if (socket->pcb.tcp == NULL) { mp_raise_OSError(MP_EBADF); } // get address ip_addr_t dest; socketpool_resolve_host_raise(socket->pool, host, &dest); err_t err = ERR_ARG; switch (socket->type) { case MOD_NETWORK_SOCK_STREAM: { if (socket->state != STATE_NEW) { if (socket->state == STATE_CONNECTED) { mp_raise_OSError(MP_EISCONN); } else { mp_raise_OSError(MP_EALREADY); } } // Register our receive callback. MICROPY_PY_LWIP_ENTER tcp_recv(socket->pcb.tcp, _lwip_tcp_recv); tcp_err(socket->pcb.tcp, _lwip_tcp_error); socket->state = STATE_CONNECTING; err = tcp_connect(socket->pcb.tcp, &dest, port, _lwip_tcp_connected); if (err != ERR_OK) { MICROPY_PY_LWIP_EXIT socket->state = STATE_NEW; mp_raise_OSError(error_lookup_table[-err]); } socket->peer_port = (mp_uint_t)port; memcpy(socket->peer, &dest, sizeof(socket->peer)); MICROPY_PY_LWIP_EXIT // And now we wait... if (socket->timeout != (unsigned)-1) { for (mp_uint_t retries = socket->timeout / 100; retries--;) { mp_hal_delay_ms(100); if (socket->state != STATE_CONNECTING) { break; } } if (socket->state == STATE_CONNECTING) { mp_raise_OSError(MP_EINPROGRESS); } } else { while (socket->state == STATE_CONNECTING) { poll_sockets(); } } if (socket->state == STATE_CONNECTED) { err = ERR_OK; } else { err = socket->state; } break; } case MOD_NETWORK_SOCK_DGRAM: { err = udp_connect(socket->pcb.udp, &dest, port); break; } #if MICROPY_PY_LWIP_SOCK_RAW case MOD_NETWORK_SOCK_RAW: { err = raw_connect(socket->pcb.raw, &dest); break; } #endif } if (err != ERR_OK) { mp_raise_OSError(error_lookup_table[-err]); } } bool common_hal_socketpool_socket_get_closed(socketpool_socket_obj_t *socket) { return !socket->pcb.tcp; } bool common_hal_socketpool_socket_get_connected(socketpool_socket_obj_t *socket) { return socket->state == STATE_CONNECTED; } bool common_hal_socketpool_socket_listen(socketpool_socket_obj_t *socket, int backlog) { if (socket->type != MOD_NETWORK_SOCK_STREAM) { mp_raise_OSError(MP_EOPNOTSUPP); } struct tcp_pcb *new_pcb = tcp_listen_with_backlog(socket->pcb.tcp, (u8_t)backlog); if (new_pcb == NULL) { mp_raise_OSError(MP_ENOMEM); } socket->pcb.tcp = new_pcb; // Allocate memory for the backlog of connections if (backlog <= 1) { socket->incoming.connection.alloc = 0; socket->incoming.connection.tcp.item = NULL; } else { socket->incoming.connection.alloc = backlog; socket->incoming.connection.tcp.array = m_new0(struct tcp_pcb *, backlog); } socket->incoming.connection.iget = 0; socket->incoming.connection.iput = 0; tcp_accept(new_pcb, _lwip_tcp_accept); // Socket is no longer considered "new" for purposes of polling socket->state = STATE_LISTENING; return mp_const_none; } mp_uint_t common_hal_socketpool_socket_recvfrom_into(socketpool_socket_obj_t *socket, uint8_t *buf, uint32_t len, uint8_t *ip, uint32_t *port) { int _errno; mp_uint_t ret = 0; switch (socket->type) { case SOCKETPOOL_SOCK_STREAM: { memcpy(ip, &socket->peer, sizeof(socket->peer)); *port = (mp_uint_t)socket->peer_port; ret = lwip_tcp_receive(socket, (byte *)buf, len, &_errno); break; } case SOCKETPOOL_SOCK_DGRAM: #if MICROPY_PY_LWIP_SOCK_RAW case SOCKETPOOL_SOCK_RAW: #endif ret = lwip_raw_udp_receive(socket, (byte *)buf, len, ip, port, &_errno); break; } if (ret == (unsigned)-1) { mp_raise_OSError(_errno); } return ret; } int socketpool_socket_recv_into(socketpool_socket_obj_t *socket, const uint8_t *buf, uint32_t len) { mp_uint_t ret = 0; int _errno = 0; switch (socket->type) { case SOCKETPOOL_SOCK_STREAM: { ret = lwip_tcp_receive(socket, (byte *)buf, len, &_errno); break; } case SOCKETPOOL_SOCK_DGRAM: #if MICROPY_PY_LWIP_SOCK_RAW case SOCKETPOOL_SOCK_RAW: #endif ret = lwip_raw_udp_receive(socket, (byte *)buf, len, NULL, NULL, &_errno); break; } if (ret == (unsigned)-1) { return -_errno; } return ret; } mp_uint_t common_hal_socketpool_socket_recv_into(socketpool_socket_obj_t *self, const uint8_t *buf, uint32_t len) { int received = socketpool_socket_recv_into(self, buf, len); if (received < 0) { mp_raise_OSError(-received); } return received; } int socketpool_socket_send(socketpool_socket_obj_t *socket, const uint8_t *buf, uint32_t len) { mp_uint_t ret = 0; int _errno = 0; switch (socket->type) { case SOCKETPOOL_SOCK_STREAM: { ret = lwip_tcp_send(socket, buf, len, &_errno); break; } case SOCKETPOOL_SOCK_DGRAM: #if MICROPY_PY_LWIP_SOCK_RAW case SOCKETPOOL_SOCK_RAW: #endif ret = lwip_raw_udp_send(socket, buf, len, NULL, 0, &_errno); break; } if (ret == (unsigned)-1) { return -_errno; } return ret; } mp_uint_t common_hal_socketpool_socket_send(socketpool_socket_obj_t *self, const uint8_t *buf, uint32_t len) { int sent = socketpool_socket_send(self, buf, len); if (sent < 0) { mp_raise_OSError(-sent); } return sent; } mp_uint_t common_hal_socketpool_socket_sendto(socketpool_socket_obj_t *socket, const char *host, size_t hostlen, uint32_t port, const uint8_t *buf, uint32_t len) { int _errno; ip_addr_t ip; socketpool_resolve_host_raise(socket->pool, host, &ip); mp_uint_t ret = 0; switch (socket->type) { case SOCKETPOOL_SOCK_STREAM: { ret = lwip_tcp_send(socket, buf, len, &_errno); break; } case SOCKETPOOL_SOCK_DGRAM: #if MICROPY_PY_LWIP_SOCK_RAW case SOCKETPOOL_SOCK_RAW: #endif ret = lwip_raw_udp_send(socket, buf, len, &ip, port, &_errno); break; } if (ret == (unsigned)-1) { mp_raise_OSError(_errno); } return ret; } void common_hal_socketpool_socket_settimeout(socketpool_socket_obj_t *self, uint32_t timeout_ms) { self->timeout = timeout_ms; } int common_hal_socketpool_socket_setsockopt(socketpool_socket_obj_t *self, int level, int optname, const void *value, size_t optlen) { if (level == SOCKETPOOL_IPPROTO_TCP && optname == SOCKETPOOL_TCP_NODELAY) { int one = 1; bool enable = optlen == sizeof(&one) && memcmp(value, &one, optlen); if (enable) { tcp_set_flags(self->pcb.tcp, TF_NODELAY); } else { tcp_clear_flags(self->pcb.tcp, TF_NODELAY); } return 0; } return -MP_EOPNOTSUPP; } bool common_hal_socketpool_readable(socketpool_socket_obj_t *self) { MICROPY_PY_LWIP_ENTER; bool result = self->incoming.pbuf != NULL; if (self->state == STATE_PEER_CLOSED) { result = true; } if (self->type == SOCKETPOOL_SOCK_STREAM && self->pcb.tcp->state == LISTEN) { struct tcp_pcb *volatile *incoming_connection = &lwip_socket_incoming_array(self)[self->incoming.connection.iget]; result = (incoming_connection != NULL); } MICROPY_PY_LWIP_EXIT; return result; } bool common_hal_socketpool_writable(socketpool_socket_obj_t *self) { bool result = false; MICROPY_PY_LWIP_ENTER; switch (self->type) { case SOCKETPOOL_SOCK_STREAM: { result = tcp_sndbuf(self->pcb.tcp) != 0; break; } case SOCKETPOOL_SOCK_DGRAM: #if MICROPY_PY_LWIP_SOCK_RAW case SOCKETPOOL_SOCK_RAW: #endif result = true; break; } MICROPY_PY_LWIP_EXIT; return result; } void socketpool_socket_move(socketpool_socket_obj_t *self, socketpool_socket_obj_t *sock) { *sock = *self; self->state = _ERR_BADF; // Reregister the callbacks with the new socket copy. MICROPY_PY_LWIP_ENTER; tcp_arg(self->pcb.tcp, NULL); tcp_err(self->pcb.tcp, NULL); tcp_recv(self->pcb.tcp, NULL); self->pcb.tcp = NULL; tcp_arg(sock->pcb.tcp, (void *)sock); tcp_err(sock->pcb.tcp, _lwip_tcp_error); tcp_recv(sock->pcb.tcp, _lwip_tcp_recv); MICROPY_PY_LWIP_EXIT; } void socketpool_socket_reset(socketpool_socket_obj_t *self) { if (self->base.type == &socketpool_socket_type) { return; } self->base.type = &socketpool_socket_type; self->pcb.tcp = NULL; self->state = _ERR_BADF; }