/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // This code glues the code emitters to the runtime. #include #include #include #include #include "py/emitglue.h" #include "py/runtime0.h" #include "py/bc.h" #if 0 // print debugging info #define DEBUG_PRINT (1) #define WRITE_CODE (1) #define DEBUG_printf DEBUG_printf #define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__) #else // don't print debugging info #define DEBUG_printf(...) (void)0 #define DEBUG_OP_printf(...) (void)0 #endif #if MICROPY_DEBUG_PRINTERS mp_uint_t mp_verbose_flag = 0; #endif mp_raw_code_t *mp_emit_glue_new_raw_code(void) { mp_raw_code_t *rc = m_new0(mp_raw_code_t, 1); rc->kind = MP_CODE_RESERVED; return rc; } void mp_emit_glue_assign_bytecode(mp_raw_code_t *rc, const byte *code, mp_uint_t len, const mp_uint_t *const_table, #if MICROPY_PERSISTENT_CODE_SAVE uint16_t n_obj, uint16_t n_raw_code, #endif mp_uint_t scope_flags) { rc->kind = MP_CODE_BYTECODE; rc->scope_flags = scope_flags; rc->data.u_byte.bytecode = code; rc->data.u_byte.const_table = const_table; #if MICROPY_PERSISTENT_CODE_SAVE rc->data.u_byte.bc_len = len; rc->data.u_byte.n_obj = n_obj; rc->data.u_byte.n_raw_code = n_raw_code; #endif #ifdef DEBUG_PRINT DEBUG_printf("assign byte code: code=%p len=" UINT_FMT " flags=%x\n", code, len, (uint)scope_flags); #endif #if MICROPY_DEBUG_PRINTERS if (mp_verbose_flag >= 2) { mp_bytecode_print(rc, code, len, const_table); } #endif } #if MICROPY_EMIT_NATIVE || MICROPY_EMIT_INLINE_THUMB void mp_emit_glue_assign_native(mp_raw_code_t *rc, mp_raw_code_kind_t kind, void *fun_data, mp_uint_t fun_len, const mp_uint_t *const_table, mp_uint_t n_pos_args, mp_uint_t scope_flags, mp_uint_t type_sig) { assert(kind == MP_CODE_NATIVE_PY || kind == MP_CODE_NATIVE_VIPER || kind == MP_CODE_NATIVE_ASM); rc->kind = kind; rc->scope_flags = scope_flags; rc->n_pos_args = n_pos_args; rc->data.u_native.fun_data = fun_data; rc->data.u_native.const_table = const_table; rc->data.u_native.type_sig = type_sig; #ifdef DEBUG_PRINT DEBUG_printf("assign native: kind=%d fun=%p len=" UINT_FMT " n_pos_args=" UINT_FMT " flags=%x\n", kind, fun_data, fun_len, n_pos_args, (uint)scope_flags); for (mp_uint_t i = 0; i < fun_len; i++) { if (i > 0 && i % 16 == 0) { DEBUG_printf("\n"); } DEBUG_printf(" %02x", ((byte*)fun_data)[i]); } DEBUG_printf("\n"); #ifdef WRITE_CODE FILE *fp_write_code = fopen("out-code", "wb"); fwrite(fun_data, fun_len, 1, fp_write_code); fclose(fp_write_code); #endif #else (void)fun_len; #endif } #endif mp_obj_t mp_make_function_from_raw_code(const mp_raw_code_t *rc, mp_obj_t def_args, mp_obj_t def_kw_args) { DEBUG_OP_printf("make_function_from_raw_code %p\n", rc); assert(rc != NULL); // def_args must be MP_OBJ_NULL or a tuple assert(def_args == MP_OBJ_NULL || MP_OBJ_IS_TYPE(def_args, &mp_type_tuple)); // def_kw_args must be MP_OBJ_NULL or a dict assert(def_kw_args == MP_OBJ_NULL || MP_OBJ_IS_TYPE(def_kw_args, &mp_type_dict)); // make the function, depending on the raw code kind mp_obj_t fun; switch (rc->kind) { case MP_CODE_BYTECODE: no_other_choice: fun = mp_obj_new_fun_bc(def_args, def_kw_args, rc->data.u_byte.bytecode, rc->data.u_byte.const_table); break; #if MICROPY_EMIT_NATIVE case MP_CODE_NATIVE_PY: fun = mp_obj_new_fun_native(def_args, def_kw_args, rc->data.u_native.fun_data, rc->data.u_native.const_table); break; case MP_CODE_NATIVE_VIPER: fun = mp_obj_new_fun_viper(rc->n_pos_args, rc->data.u_native.fun_data, rc->data.u_native.type_sig); break; #endif #if MICROPY_EMIT_INLINE_THUMB case MP_CODE_NATIVE_ASM: fun = mp_obj_new_fun_asm(rc->n_pos_args, rc->data.u_native.fun_data, rc->data.u_native.type_sig); break; #endif default: // raw code was never set (this should not happen) assert(0); goto no_other_choice; // to help flow control analysis } // check for generator functions and if so wrap in generator object if ((rc->scope_flags & MP_SCOPE_FLAG_GENERATOR) != 0) { fun = mp_obj_new_gen_wrap(fun); } return fun; } mp_obj_t mp_make_closure_from_raw_code(const mp_raw_code_t *rc, mp_uint_t n_closed_over, const mp_obj_t *args) { DEBUG_OP_printf("make_closure_from_raw_code %p " UINT_FMT " %p\n", rc, n_closed_over, args); // make function object mp_obj_t ffun; if (n_closed_over & 0x100) { // default positional and keyword args given ffun = mp_make_function_from_raw_code(rc, args[0], args[1]); } else { // default positional and keyword args not given ffun = mp_make_function_from_raw_code(rc, MP_OBJ_NULL, MP_OBJ_NULL); } // wrap function in closure object return mp_obj_new_closure(ffun, n_closed_over & 0xff, args + ((n_closed_over >> 7) & 2)); } #if MICROPY_PERSISTENT_CODE_LOAD || MICROPY_PERSISTENT_CODE_SAVE #include "py/smallint.h" // The feature flags byte encodes the compile-time config options that // affect the generate bytecode. #define MPY_FEATURE_FLAGS ( \ ((MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE) << 0) \ | ((MICROPY_PY_BUILTINS_STR_UNICODE) << 1) \ ) // This is a version of the flags that can be configured at runtime. #define MPY_FEATURE_FLAGS_DYNAMIC ( \ ((MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE_DYNAMIC) << 0) \ | ((MICROPY_PY_BUILTINS_STR_UNICODE_DYNAMIC) << 1) \ ) #if MICROPY_PERSISTENT_CODE_LOAD || (MICROPY_PERSISTENT_CODE_SAVE && !MICROPY_DYNAMIC_COMPILER) // The bytecode will depend on the number of bits in a small-int, and // this function computes that (could make it a fixed constant, but it // would need to be defined in mpconfigport.h). STATIC int mp_small_int_bits(void) { mp_int_t i = MP_SMALL_INT_MAX; int n = 1; while (i != 0) { i >>= 1; ++n; } return n; } #endif typedef struct _bytecode_prelude_t { uint n_state; uint n_exc_stack; uint scope_flags; uint n_pos_args; uint n_kwonly_args; uint n_def_pos_args; uint code_info_size; } bytecode_prelude_t; // ip will point to start of opcodes // ip2 will point to simple_name, source_file qstrs STATIC void extract_prelude(const byte **ip, const byte **ip2, bytecode_prelude_t *prelude) { prelude->n_state = mp_decode_uint(ip); prelude->n_exc_stack = mp_decode_uint(ip); prelude->scope_flags = *(*ip)++; prelude->n_pos_args = *(*ip)++; prelude->n_kwonly_args = *(*ip)++; prelude->n_def_pos_args = *(*ip)++; *ip2 = *ip; prelude->code_info_size = mp_decode_uint(ip2); *ip += prelude->code_info_size; while (*(*ip)++ != 255) { } } #endif // MICROPY_PERSISTENT_CODE_LOAD || MICROPY_PERSISTENT_CODE_SAVE #if MICROPY_PERSISTENT_CODE_LOAD #include "py/parsenum.h" #include "py/bc0.h" STATIC int read_byte(mp_reader_t *reader) { return reader->read_byte(reader->data); } STATIC void read_bytes(mp_reader_t *reader, byte *buf, size_t len) { while (len-- > 0) { *buf++ = reader->read_byte(reader->data); } } STATIC mp_uint_t read_uint(mp_reader_t *reader) { mp_uint_t unum = 0; for (;;) { byte b = reader->read_byte(reader->data); unum = (unum << 7) | (b & 0x7f); if ((b & 0x80) == 0) { break; } } return unum; } STATIC qstr load_qstr(mp_reader_t *reader) { mp_uint_t len = read_uint(reader); char *str = m_new(char, len); read_bytes(reader, (byte*)str, len); qstr qst = qstr_from_strn(str, len); m_del(char, str, len); return qst; } STATIC mp_obj_t load_obj(mp_reader_t *reader) { byte obj_type = read_byte(reader); if (obj_type == 'e') { return MP_OBJ_FROM_PTR(&mp_const_ellipsis_obj); } else { size_t len = read_uint(reader); vstr_t vstr; vstr_init_len(&vstr, len); read_bytes(reader, (byte*)vstr.buf, len); if (obj_type == 's' || obj_type == 'b') { return mp_obj_new_str_from_vstr(obj_type == 's' ? &mp_type_str : &mp_type_bytes, &vstr); } else if (obj_type == 'i') { return mp_parse_num_integer(vstr.buf, vstr.len, 10, NULL); } else { assert(obj_type == 'f' || obj_type == 'c'); return mp_parse_num_decimal(vstr.buf, vstr.len, obj_type == 'c', false, NULL); } } } STATIC void load_bytecode_qstrs(mp_reader_t *reader, byte *ip, byte *ip_top) { while (ip < ip_top) { size_t sz; uint f = mp_opcode_format(ip, &sz); if (f == MP_OPCODE_QSTR) { qstr qst = load_qstr(reader); ip[1] = qst; ip[2] = qst >> 8; } ip += sz; } } STATIC mp_raw_code_t *load_raw_code(mp_reader_t *reader) { // load bytecode mp_uint_t bc_len = read_uint(reader); byte *bytecode = m_new(byte, bc_len); read_bytes(reader, bytecode, bc_len); // extract prelude const byte *ip = bytecode; const byte *ip2; bytecode_prelude_t prelude; extract_prelude(&ip, &ip2, &prelude); // load qstrs and link global qstr ids into bytecode qstr simple_name = load_qstr(reader); qstr source_file = load_qstr(reader); ((byte*)ip2)[0] = simple_name; ((byte*)ip2)[1] = simple_name >> 8; ((byte*)ip2)[2] = source_file; ((byte*)ip2)[3] = source_file >> 8; load_bytecode_qstrs(reader, (byte*)ip, bytecode + bc_len); // load constant table mp_uint_t n_obj = read_uint(reader); mp_uint_t n_raw_code = read_uint(reader); mp_uint_t *const_table = m_new(mp_uint_t, prelude.n_pos_args + prelude.n_kwonly_args + n_obj + n_raw_code); mp_uint_t *ct = const_table; for (mp_uint_t i = 0; i < prelude.n_pos_args + prelude.n_kwonly_args; ++i) { *ct++ = (mp_uint_t)MP_OBJ_NEW_QSTR(load_qstr(reader)); } for (mp_uint_t i = 0; i < n_obj; ++i) { *ct++ = (mp_uint_t)load_obj(reader); } for (mp_uint_t i = 0; i < n_raw_code; ++i) { *ct++ = (mp_uint_t)(uintptr_t)load_raw_code(reader); } // create raw_code and return it mp_raw_code_t *rc = mp_emit_glue_new_raw_code(); mp_emit_glue_assign_bytecode(rc, bytecode, bc_len, const_table, #if MICROPY_PERSISTENT_CODE_SAVE n_obj, n_raw_code, #endif prelude.scope_flags); return rc; } mp_raw_code_t *mp_raw_code_load(mp_reader_t *reader) { byte header[4]; read_bytes(reader, header, sizeof(header)); if (strncmp((char*)header, "M\x00", 2) != 0) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "invalid .mpy file")); } if (header[2] != MPY_FEATURE_FLAGS || header[3] > mp_small_int_bits()) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "incompatible .mpy file")); } return load_raw_code(reader); } typedef struct _mp_mem_reader_t { const byte *cur; const byte *end; } mp_mem_reader_t; STATIC mp_uint_t mp_mem_reader_next_byte(void *br_in) { mp_mem_reader_t *br = br_in; if (br->cur < br->end) { return *br->cur++; } else { return (mp_uint_t)-1; } } mp_raw_code_t *mp_raw_code_load_mem(const byte *buf, size_t len) { mp_mem_reader_t mr = {buf, buf + len}; mp_reader_t reader = {&mr, mp_mem_reader_next_byte}; return mp_raw_code_load(&reader); } // here we define mp_raw_code_load_file depending on the port // TODO abstract this away properly #if defined(__i386__) || defined(__x86_64__) || defined(__aarch64__) || (defined(__arm__) && (defined(__unix__))) // unix file reader #include #include #include typedef struct _mp_lexer_file_buf_t { int fd; byte buf[20]; mp_uint_t len; mp_uint_t pos; } mp_lexer_file_buf_t; STATIC mp_uint_t file_buf_next_byte(void *fb_in) { mp_lexer_file_buf_t *fb = fb_in; if (fb->pos >= fb->len) { if (fb->len == 0) { return (mp_uint_t)-1; } else { int n = read(fb->fd, fb->buf, sizeof(fb->buf)); if (n <= 0) { fb->len = 0; return (mp_uint_t)-1; } fb->len = n; fb->pos = 0; } } return fb->buf[fb->pos++]; } mp_raw_code_t *mp_raw_code_load_file(const char *filename) { mp_lexer_file_buf_t fb; fb.fd = open(filename, O_RDONLY, 0644); int n = read(fb.fd, fb.buf, sizeof(fb.buf)); fb.len = n; fb.pos = 0; mp_reader_t reader; reader.data = &fb; reader.read_byte = file_buf_next_byte; mp_raw_code_t *rc = mp_raw_code_load(&reader); close(fb.fd); return rc; } #elif defined(__thumb2__) // fatfs file reader (assume thumb2 arch uses fatfs...) #include "lib/fatfs/ff.h" typedef struct _mp_lexer_file_buf_t { FIL fp; byte buf[20]; uint16_t len; uint16_t pos; } mp_lexer_file_buf_t; STATIC mp_uint_t file_buf_next_byte(void *fb_in) { mp_lexer_file_buf_t *fb = fb_in; if (fb->pos >= fb->len) { if (fb->len < sizeof(fb->buf)) { return (mp_uint_t)-1; } else { UINT n; f_read(&fb->fp, fb->buf, sizeof(fb->buf), &n); if (n == 0) { return (mp_uint_t)-1; } fb->len = n; fb->pos = 0; } } return fb->buf[fb->pos++]; } mp_raw_code_t *mp_raw_code_load_file(const char *filename) { mp_lexer_file_buf_t fb; /*FRESULT res =*/ f_open(&fb.fp, filename, FA_READ); UINT n; f_read(&fb.fp, fb.buf, sizeof(fb.buf), &n); fb.len = n; fb.pos = 0; mp_reader_t reader; reader.data = &fb; reader.read_byte = file_buf_next_byte; mp_raw_code_t *rc = mp_raw_code_load(&reader); f_close(&fb.fp); return rc; } #endif #endif // MICROPY_PERSISTENT_CODE_LOAD #if MICROPY_PERSISTENT_CODE_SAVE #include "py/objstr.h" STATIC void mp_print_bytes(mp_print_t *print, const byte *data, size_t len) { print->print_strn(print->data, (const char*)data, len); } #define BYTES_FOR_INT ((BYTES_PER_WORD * 8 + 6) / 7) STATIC void mp_print_uint(mp_print_t *print, mp_uint_t n) { byte buf[BYTES_FOR_INT]; byte *p = buf + sizeof(buf); *--p = n & 0x7f; n >>= 7; for (; n != 0; n >>= 7) { *--p = 0x80 | (n & 0x7f); } print->print_strn(print->data, (char*)p, buf + sizeof(buf) - p); } STATIC void save_qstr(mp_print_t *print, qstr qst) { size_t len; const byte *str = qstr_data(qst, &len); mp_print_uint(print, len); mp_print_bytes(print, str, len); } STATIC void save_obj(mp_print_t *print, mp_obj_t o) { if (MP_OBJ_IS_STR_OR_BYTES(o)) { byte obj_type; if (MP_OBJ_IS_STR(o)) { obj_type = 's'; } else { obj_type = 'b'; } mp_uint_t len; const char *str = mp_obj_str_get_data(o, &len); mp_print_bytes(print, &obj_type, 1); mp_print_uint(print, len); mp_print_bytes(print, (const byte*)str, len); } else if (MP_OBJ_TO_PTR(o) == &mp_const_ellipsis_obj) { byte obj_type = 'e'; mp_print_bytes(print, &obj_type, 1); } else { // we save numbers using a simplistic text representation // TODO could be improved byte obj_type; if (MP_OBJ_IS_TYPE(o, &mp_type_int)) { obj_type = 'i'; } else if (mp_obj_is_float(o)) { obj_type = 'f'; } else { assert(MP_OBJ_IS_TYPE(o, &mp_type_complex)); obj_type = 'c'; } vstr_t vstr; mp_print_t pr; vstr_init_print(&vstr, 10, &pr); mp_obj_print_helper(&pr, o, PRINT_REPR); mp_print_bytes(print, &obj_type, 1); mp_print_uint(print, vstr.len); mp_print_bytes(print, (const byte*)vstr.buf, vstr.len); vstr_clear(&vstr); } } STATIC void save_bytecode_qstrs(mp_print_t *print, const byte *ip, const byte *ip_top) { while (ip < ip_top) { size_t sz; uint f = mp_opcode_format(ip, &sz); if (f == MP_OPCODE_QSTR) { qstr qst = ip[1] | (ip[2] << 8); save_qstr(print, qst); } ip += sz; } } STATIC void save_raw_code(mp_print_t *print, mp_raw_code_t *rc) { if (rc->kind != MP_CODE_BYTECODE) { nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can only save bytecode")); } // save bytecode mp_print_uint(print, rc->data.u_byte.bc_len); mp_print_bytes(print, rc->data.u_byte.bytecode, rc->data.u_byte.bc_len); // extract prelude const byte *ip = rc->data.u_byte.bytecode; const byte *ip2; bytecode_prelude_t prelude; extract_prelude(&ip, &ip2, &prelude); // save qstrs save_qstr(print, ip2[0] | (ip2[1] << 8)); // simple_name save_qstr(print, ip2[2] | (ip2[3] << 8)); // source_file save_bytecode_qstrs(print, ip, rc->data.u_byte.bytecode + rc->data.u_byte.bc_len); // save constant table mp_print_uint(print, rc->data.u_byte.n_obj); mp_print_uint(print, rc->data.u_byte.n_raw_code); const mp_uint_t *const_table = rc->data.u_byte.const_table; for (uint i = 0; i < prelude.n_pos_args + prelude.n_kwonly_args; ++i) { mp_obj_t o = (mp_obj_t)*const_table++; save_qstr(print, MP_OBJ_QSTR_VALUE(o)); } for (uint i = 0; i < rc->data.u_byte.n_obj; ++i) { save_obj(print, (mp_obj_t)*const_table++); } for (uint i = 0; i < rc->data.u_byte.n_raw_code; ++i) { save_raw_code(print, (mp_raw_code_t*)(uintptr_t)*const_table++); } } void mp_raw_code_save(mp_raw_code_t *rc, mp_print_t *print) { // header contains: // byte 'M' // byte version // byte feature flags // byte number of bits in a small int byte header[4] = {'M', 0, MPY_FEATURE_FLAGS_DYNAMIC, #if MICROPY_DYNAMIC_COMPILER mp_dynamic_compiler.small_int_bits, #else mp_small_int_bits(), #endif }; mp_print_bytes(print, header, sizeof(header)); save_raw_code(print, rc); } // here we define mp_raw_code_save_file depending on the port // TODO abstract this away properly #if defined(__i386__) || defined(__x86_64__) || (defined(__arm__) && (defined(__unix__))) #include #include #include STATIC void fd_print_strn(void *env, const char *str, size_t len) { int fd = (intptr_t)env; ssize_t ret = write(fd, str, len); (void)ret; } void mp_raw_code_save_file(mp_raw_code_t *rc, const char *filename) { int fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0644); mp_print_t fd_print = {(void*)(intptr_t)fd, fd_print_strn}; mp_raw_code_save(rc, &fd_print); close(fd); } #else #error mp_raw_code_save_file not implemented for this platform #endif #endif // MICROPY_PERSISTENT_CODE_SAVE