/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/nlr.h" #include "py/runtime.h" #include "py/binary.h" #include "py/mphal.h" #include "adc.h" #include "pin.h" #include "genhdr/pins.h" #include "timer.h" /// \moduleref pyb /// \class ADC - analog to digital conversion: read analog values on a pin /// /// Usage: /// /// adc = pyb.ADC(pin) # create an analog object from a pin /// val = adc.read() # read an analog value /// /// adc = pyb.ADCAll(resolution) # creale an ADCAll object /// val = adc.read_channel(channel) # read the given channel /// val = adc.read_core_temp() # read MCU temperature /// val = adc.read_core_vbat() # read MCU VBAT /// val = adc.read_core_vref() # read MCU VREF /* ADC defintions */ #define ADCx (ADC1) #define ADCx_CLK_ENABLE __ADC1_CLK_ENABLE #define ADC_NUM_CHANNELS (19) #if defined(MCU_SERIES_F4) #define ADC_FIRST_GPIO_CHANNEL (0) #define ADC_LAST_GPIO_CHANNEL (15) #define ADC_CAL_ADDRESS (0x1fff7a2a) #define ADC_CAL1 ((uint16_t*)(ADC_CAL_ADDRESS + 2)) #define ADC_CAL2 ((uint16_t*)(ADC_CAL_ADDRESS + 4)) #elif defined(MCU_SERIES_F7) #define ADC_FIRST_GPIO_CHANNEL (0) #define ADC_LAST_GPIO_CHANNEL (15) #define ADC_CAL_ADDRESS (0x1ff0f44a) #define ADC_CAL1 ((uint16_t*)(ADC_CAL_ADDRESS + 2)) #define ADC_CAL2 ((uint16_t*)(ADC_CAL_ADDRESS + 4)) #elif defined(MCU_SERIES_L4) #define ADC_FIRST_GPIO_CHANNEL (1) #define ADC_LAST_GPIO_CHANNEL (16) #define ADC_CAL_ADDRESS (0x1fff75aa) #define ADC_CAL1 ((uint16_t*)(ADC_CAL_ADDRESS - 2)) #define ADC_CAL2 ((uint16_t*)(ADC_CAL_ADDRESS + 0x20)) #else #error Unsupported processor #endif #if defined(STM32F405xx) || defined(STM32F415xx) || \ defined(STM32F407xx) || defined(STM32F417xx) || \ defined(STM32F401xC) || defined(STM32F401xE) || \ defined(STM32F411xE) #define VBAT_DIV (2) #elif defined(STM32F427xx) || defined(STM32F429xx) || \ defined(STM32F437xx) || defined(STM32F439xx) || \ defined(STM32F746xx) #define VBAT_DIV (4) #elif defined(STM32L476xx) #define VBAT_DIV (3) #else #error Unsupported processor #endif /* Core temperature sensor definitions */ #define CORE_TEMP_V25 (943) /* (0.76v/3.3v)*(2^ADC resoultion) */ #define CORE_TEMP_AVG_SLOPE (3) /* (2.5mv/3.3v)*(2^ADC resoultion) */ // scale and calibration values for VBAT and VREF #define ADC_SCALE (3.3f / 4095) #define VREFIN_CAL ((uint16_t *)ADC_CAL_ADDRESS) typedef struct _pyb_obj_adc_t { mp_obj_base_t base; mp_obj_t pin_name; int channel; ADC_HandleTypeDef handle; } pyb_obj_adc_t; STATIC bool is_adcx_channel(int channel) { #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) return IS_ADC_CHANNEL(channel); #elif defined(MCU_SERIES_L4) ADC_HandleTypeDef handle; handle.Instance = ADCx; return IS_ADC_CHANNEL(&handle, channel); #else #error Unsupported processor #endif } STATIC void adc_wait_for_eoc_or_timeout(int32_t timeout) { uint32_t tickstart = HAL_GetTick(); #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) while ((ADCx->SR & ADC_FLAG_EOC) != ADC_FLAG_EOC) { #elif defined(MCU_SERIES_L4) while (READ_BIT(ADCx->ISR, ADC_FLAG_EOC) != ADC_FLAG_EOC) { #else #error Unsupported processor #endif if (((HAL_GetTick() - tickstart ) > timeout)) { break; // timeout } } } STATIC void adcx_clock_enable(void) { #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) ADCx_CLK_ENABLE(); #elif defined(MCU_SERIES_L4) __HAL_RCC_ADC_CLK_ENABLE(); #else #error Unsupported processor #endif } STATIC void adc_init_single(pyb_obj_adc_t *adc_obj) { if (!is_adcx_channel(adc_obj->channel)) { return; } if (ADC_FIRST_GPIO_CHANNEL <= adc_obj->channel && adc_obj->channel <= ADC_LAST_GPIO_CHANNEL) { // Channels 0-16 correspond to real pins. Configure the GPIO pin in // ADC mode. const pin_obj_t *pin = pin_adc1[adc_obj->channel]; mp_hal_gpio_clock_enable(pin->gpio); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = pin->pin_mask; #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) GPIO_InitStructure.Mode = GPIO_MODE_ANALOG; #elif defined(MCU_SERIES_L4) GPIO_InitStructure.Mode = GPIO_MODE_ANALOG_ADC_CONTROL; #else #error Unsupported processor #endif GPIO_InitStructure.Pull = GPIO_NOPULL; HAL_GPIO_Init(pin->gpio, &GPIO_InitStructure); } adcx_clock_enable(); ADC_HandleTypeDef *adcHandle = &adc_obj->handle; adcHandle->Instance = ADCx; adcHandle->Init.ContinuousConvMode = DISABLE; adcHandle->Init.DiscontinuousConvMode = DISABLE; adcHandle->Init.NbrOfDiscConversion = 0; adcHandle->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; adcHandle->Init.DataAlign = ADC_DATAALIGN_RIGHT; adcHandle->Init.NbrOfConversion = 1; adcHandle->Init.DMAContinuousRequests = DISABLE; #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) adcHandle->Init.Resolution = ADC_RESOLUTION12b; adcHandle->Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2; adcHandle->Init.ScanConvMode = DISABLE; adcHandle->Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1; adcHandle->Init.EOCSelection = DISABLE; #elif defined(MCU_SERIES_L4) adcHandle->Init.Resolution = ADC_RESOLUTION_12B; adcHandle->Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; adcHandle->Init.ScanConvMode = ADC_SCAN_DISABLE; adcHandle->Init.EOCSelection = ADC_EOC_SINGLE_CONV; adcHandle->Init.ExternalTrigConv = ADC_SOFTWARE_START; adcHandle->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; adcHandle->Init.LowPowerAutoWait = DISABLE; adcHandle->Init.Overrun = ADC_OVR_DATA_PRESERVED; adcHandle->Init.OversamplingMode = DISABLE; #else #error Unsupported processor #endif HAL_ADC_Init(adcHandle); #if defined(MCU_SERIES_L4) ADC_MultiModeTypeDef multimode; multimode.Mode = ADC_MODE_INDEPENDENT; if (HAL_ADCEx_MultiModeConfigChannel(adcHandle, &multimode) != HAL_OK) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Can not set multimode on ADC1 channel: %d", adc_obj->channel)); } #endif } STATIC void adc_config_channel(ADC_HandleTypeDef *adc_handle, uint32_t channel) { ADC_ChannelConfTypeDef sConfig; sConfig.Channel = channel; sConfig.Rank = 1; #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES; #elif defined(MCU_SERIES_L4) sConfig.SamplingTime = ADC_SAMPLETIME_12CYCLES_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; #else #error Unsupported processor #endif sConfig.Offset = 0; HAL_ADC_ConfigChannel(adc_handle, &sConfig); } STATIC uint32_t adc_read_channel(ADC_HandleTypeDef *adcHandle) { uint32_t rawValue = 0; HAL_ADC_Start(adcHandle); if (HAL_ADC_PollForConversion(adcHandle, 10) == HAL_OK && (HAL_ADC_GetState(adcHandle) & HAL_ADC_STATE_EOC_REG) == HAL_ADC_STATE_EOC_REG) { rawValue = HAL_ADC_GetValue(adcHandle); } HAL_ADC_Stop(adcHandle); return rawValue; } /******************************************************************************/ /* Micro Python bindings : adc object (single channel) */ STATIC void adc_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { pyb_obj_adc_t *self = self_in; mp_print_str(print, "pin_name, PRINT_STR); mp_printf(print, " channel=%lu>", self->channel); } /// \classmethod \constructor(pin) /// Create an ADC object associated with the given pin. /// This allows you to then read analog values on that pin. STATIC mp_obj_t adc_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // check number of arguments mp_arg_check_num(n_args, n_kw, 1, 1, false); // 1st argument is the pin name mp_obj_t pin_obj = args[0]; uint32_t channel; if (MP_OBJ_IS_INT(pin_obj)) { channel = mp_obj_get_int(pin_obj); } else { const pin_obj_t *pin = pin_find(pin_obj); if ((pin->adc_num & PIN_ADC1) == 0) { // No ADC1 function on that pin nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %q does not have ADC capabilities", pin->name)); } channel = pin->adc_channel; } if (!is_adcx_channel(channel)) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "not a valid ADC Channel: %d", channel)); } if (ADC_FIRST_GPIO_CHANNEL <= channel && channel <= ADC_LAST_GPIO_CHANNEL) { // these channels correspond to physical GPIO ports so make sure they exist if (pin_adc1[channel] == NULL) { nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "channel %d not available on this board", channel)); } } pyb_obj_adc_t *o = m_new_obj(pyb_obj_adc_t); memset(o, 0, sizeof(*o)); o->base.type = &pyb_adc_type; o->pin_name = pin_obj; o->channel = channel; adc_init_single(o); return o; } /// \method read() /// Read the value on the analog pin and return it. The returned value /// will be between 0 and 4095. STATIC mp_obj_t adc_read(mp_obj_t self_in) { pyb_obj_adc_t *self = self_in; adc_config_channel(&self->handle, self->channel); uint32_t data = adc_read_channel(&self->handle); return mp_obj_new_int(data); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_read_obj, adc_read); /// \method read_timed(buf, timer) /// /// Read analog values into `buf` at a rate set by the `timer` object. /// /// `buf` can be bytearray or array.array for example. The ADC values have /// 12-bit resolution and are stored directly into `buf` if its element size is /// 16 bits or greater. If `buf` has only 8-bit elements (eg a bytearray) then /// the sample resolution will be reduced to 8 bits. /// /// `timer` should be a Timer object, and a sample is read each time the timer /// triggers. The timer must already be initialised and running at the desired /// sampling frequency. /// /// To support previous behaviour of this function, `timer` can also be an /// integer which specifies the frequency (in Hz) to sample at. In this case /// Timer(6) will be automatically configured to run at the given frequency. /// /// Example using a Timer object (preferred way): /// /// adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19 /// tim = pyb.Timer(6, freq=10) # create a timer running at 10Hz /// buf = bytearray(100) # creat a buffer to store the samples /// adc.read_timed(buf, tim) # sample 100 values, taking 10s /// /// Example using an integer for the frequency: /// /// adc = pyb.ADC(pyb.Pin.board.X19) # create an ADC on pin X19 /// buf = bytearray(100) # create a buffer of 100 bytes /// adc.read_timed(buf, 10) # read analog values into buf at 10Hz /// # this will take 10 seconds to finish /// for val in buf: # loop over all values /// print(val) # print the value out /// /// This function does not allocate any memory. STATIC mp_obj_t adc_read_timed(mp_obj_t self_in, mp_obj_t buf_in, mp_obj_t freq_in) { pyb_obj_adc_t *self = self_in; mp_buffer_info_t bufinfo; mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_WRITE); size_t typesize = mp_binary_get_size('@', bufinfo.typecode, NULL); TIM_HandleTypeDef *tim; #if defined(TIM6) if (mp_obj_is_integer(freq_in)) { // freq in Hz given so init TIM6 (legacy behaviour) tim = timer_tim6_init(mp_obj_get_int(freq_in)); HAL_TIM_Base_Start(tim); } else #endif { // use the supplied timer object as the sampling time base tim = pyb_timer_get_handle(freq_in); } // configure the ADC channel adc_config_channel(&self->handle, self->channel); // This uses the timer in polling mode to do the sampling // TODO use DMA uint nelems = bufinfo.len / typesize; for (uint index = 0; index < nelems; index++) { // Wait for the timer to trigger so we sample at the correct frequency while (__HAL_TIM_GET_FLAG(tim, TIM_FLAG_UPDATE) == RESET) { } __HAL_TIM_CLEAR_FLAG(tim, TIM_FLAG_UPDATE); if (index == 0) { // for the first sample we need to turn the ADC on HAL_ADC_Start(&self->handle); } else { // for subsequent samples we can just set the "start sample" bit #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) ADCx->CR2 |= (uint32_t)ADC_CR2_SWSTART; #elif defined(MCU_SERIES_L4) SET_BIT(ADCx->CR, ADC_CR_ADSTART); #else #error Unsupported processor #endif } // wait for sample to complete #define READ_TIMED_TIMEOUT (10) // in ms adc_wait_for_eoc_or_timeout(READ_TIMED_TIMEOUT); // read value uint value = ADCx->DR; // store value in buffer if (typesize == 1) { value >>= 4; } mp_binary_set_val_array_from_int(bufinfo.typecode, bufinfo.buf, index, value); } // turn the ADC off HAL_ADC_Stop(&self->handle); #if defined(TIM6) if (mp_obj_is_integer(freq_in)) { // stop timer if we initialised TIM6 in this function (legacy behaviour) HAL_TIM_Base_Stop(tim); } #endif return mp_obj_new_int(bufinfo.len); } STATIC MP_DEFINE_CONST_FUN_OBJ_3(adc_read_timed_obj, adc_read_timed); STATIC const mp_map_elem_t adc_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&adc_read_obj}, { MP_OBJ_NEW_QSTR(MP_QSTR_read_timed), (mp_obj_t)&adc_read_timed_obj}, }; STATIC MP_DEFINE_CONST_DICT(adc_locals_dict, adc_locals_dict_table); const mp_obj_type_t pyb_adc_type = { { &mp_type_type }, .name = MP_QSTR_ADC, .print = adc_print, .make_new = adc_make_new, .locals_dict = (mp_obj_t)&adc_locals_dict, }; /******************************************************************************/ /* adc all object */ typedef struct _pyb_adc_all_obj_t { mp_obj_base_t base; ADC_HandleTypeDef handle; } pyb_adc_all_obj_t; void adc_init_all(pyb_adc_all_obj_t *adc_all, uint32_t resolution, uint32_t en_mask) { switch (resolution) { case 6: resolution = ADC_RESOLUTION6b; break; case 8: resolution = ADC_RESOLUTION8b; break; case 10: resolution = ADC_RESOLUTION10b; break; case 12: resolution = ADC_RESOLUTION12b; break; default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "resolution %d not supported", resolution)); } for (uint32_t channel = ADC_FIRST_GPIO_CHANNEL; channel <= ADC_LAST_GPIO_CHANNEL; ++channel) { // only initialise those channels that are selected with the en_mask if (en_mask & (1 << channel)) { // Channels 0-16 correspond to real pins. Configure the GPIO pin in // ADC mode. const pin_obj_t *pin = pin_adc1[channel]; if (pin) { mp_hal_gpio_clock_enable(pin->gpio); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Pin = pin->pin_mask; GPIO_InitStructure.Mode = GPIO_MODE_ANALOG; GPIO_InitStructure.Pull = GPIO_NOPULL; HAL_GPIO_Init(pin->gpio, &GPIO_InitStructure); } } } adcx_clock_enable(); ADC_HandleTypeDef *adcHandle = &adc_all->handle; adcHandle->Instance = ADCx; adcHandle->Init.Resolution = resolution; adcHandle->Init.ContinuousConvMode = DISABLE; adcHandle->Init.DiscontinuousConvMode = DISABLE; adcHandle->Init.NbrOfDiscConversion = 0; adcHandle->Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; adcHandle->Init.DataAlign = ADC_DATAALIGN_RIGHT; adcHandle->Init.NbrOfConversion = 1; adcHandle->Init.DMAContinuousRequests = DISABLE; adcHandle->Init.EOCSelection = DISABLE; #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) adcHandle->Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2; adcHandle->Init.ScanConvMode = DISABLE; adcHandle->Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1; #elif defined(MCU_SERIES_L4) adcHandle->Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV2; adcHandle->Init.ScanConvMode = ADC_SCAN_DISABLE; adcHandle->Init.ExternalTrigConv = ADC_EXTERNALTRIG_T1_CC1; adcHandle->Init.LowPowerAutoWait = DISABLE; adcHandle->Init.Overrun = ADC_OVR_DATA_PRESERVED; adcHandle->Init.OversamplingMode = DISABLE; #else #error Unsupported processor #endif HAL_ADC_Init(adcHandle); } uint32_t adc_config_and_read_channel(ADC_HandleTypeDef *adcHandle, uint32_t channel) { adc_config_channel(adcHandle, channel); return adc_read_channel(adcHandle); } int adc_get_resolution(ADC_HandleTypeDef *adcHandle) { uint32_t res_reg = __HAL_ADC_GET_RESOLUTION(adcHandle); switch (res_reg) { case ADC_RESOLUTION6b: return 6; case ADC_RESOLUTION8b: return 8; case ADC_RESOLUTION10b: return 10; } return 12; } int adc_read_core_temp(ADC_HandleTypeDef *adcHandle) { int32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_TEMPSENSOR); // Note: constants assume 12-bit resolution, so we scale the raw value to // be 12-bits. raw_value <<= (12 - adc_get_resolution(adcHandle)); return ((raw_value - CORE_TEMP_V25) / CORE_TEMP_AVG_SLOPE) + 25; } #if MICROPY_PY_BUILTINS_FLOAT // correction factor for reference value STATIC volatile float adc_refcor = 1.0f; float adc_read_core_temp_float(ADC_HandleTypeDef *adcHandle) { int32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_TEMPSENSOR); // constants assume 12-bit resolution so we scale the raw value to 12-bits raw_value <<= (12 - adc_get_resolution(adcHandle)); float core_temp_avg_slope = (*ADC_CAL2 - *ADC_CAL1) / 80.0; return (((float)raw_value * adc_refcor - *ADC_CAL1) / core_temp_avg_slope) + 30.0f; } float adc_read_core_vbat(ADC_HandleTypeDef *adcHandle) { uint32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_VBAT); // Note: constants assume 12-bit resolution, so we scale the raw value to // be 12-bits. raw_value <<= (12 - adc_get_resolution(adcHandle)); #if defined(MCU_SERIES_F4) || defined(MCU_SERIES_F7) // ST docs say that (at least on STM32F42x and STM32F43x), VBATE must // be disabled when TSVREFE is enabled for TEMPSENSOR and VREFINT // conversions to work. VBATE is enabled by the above call to read // the channel, and here we disable VBATE so a subsequent call for // TEMPSENSOR or VREFINT works correctly. ADC->CCR &= ~ADC_CCR_VBATE; #endif return raw_value * VBAT_DIV * ADC_SCALE * adc_refcor; } float adc_read_core_vref(ADC_HandleTypeDef *adcHandle) { uint32_t raw_value = adc_config_and_read_channel(adcHandle, ADC_CHANNEL_VREFINT); // Note: constants assume 12-bit resolution, so we scale the raw value to // be 12-bits. raw_value <<= (12 - adc_get_resolution(adcHandle)); // update the reference correction factor adc_refcor = ((float)(*VREFIN_CAL)) / ((float)raw_value); return (*VREFIN_CAL) * ADC_SCALE; } #endif /******************************************************************************/ /* Micro Python bindings : adc_all object */ STATIC mp_obj_t adc_all_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) { // check number of arguments mp_arg_check_num(n_args, n_kw, 1, 2, false); // make ADCAll object pyb_adc_all_obj_t *o = m_new_obj(pyb_adc_all_obj_t); o->base.type = &pyb_adc_all_type; mp_int_t res = mp_obj_get_int(args[0]); uint32_t en_mask = 0xffffffff; if (n_args > 1) { en_mask = mp_obj_get_int(args[1]); } adc_init_all(o, res, en_mask); return o; } STATIC mp_obj_t adc_all_read_channel(mp_obj_t self_in, mp_obj_t channel) { pyb_adc_all_obj_t *self = self_in; uint32_t chan = mp_obj_get_int(channel); uint32_t data = adc_config_and_read_channel(&self->handle, chan); return mp_obj_new_int(data); } STATIC MP_DEFINE_CONST_FUN_OBJ_2(adc_all_read_channel_obj, adc_all_read_channel); STATIC mp_obj_t adc_all_read_core_temp(mp_obj_t self_in) { pyb_adc_all_obj_t *self = self_in; #if MICROPY_PY_BUILTINS_FLOAT float data = adc_read_core_temp_float(&self->handle); return mp_obj_new_float(data); #else int data = adc_read_core_temp(&self->handle); return mp_obj_new_int(data); #endif } STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_temp_obj, adc_all_read_core_temp); #if MICROPY_PY_BUILTINS_FLOAT STATIC mp_obj_t adc_all_read_core_vbat(mp_obj_t self_in) { pyb_adc_all_obj_t *self = self_in; float data = adc_read_core_vbat(&self->handle); return mp_obj_new_float(data); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vbat_obj, adc_all_read_core_vbat); STATIC mp_obj_t adc_all_read_core_vref(mp_obj_t self_in) { pyb_adc_all_obj_t *self = self_in; float data = adc_read_core_vref(&self->handle); return mp_obj_new_float(data); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(adc_all_read_core_vref_obj, adc_all_read_core_vref); #endif STATIC const mp_map_elem_t adc_all_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_read_channel), (mp_obj_t)&adc_all_read_channel_obj}, { MP_OBJ_NEW_QSTR(MP_QSTR_read_core_temp), (mp_obj_t)&adc_all_read_core_temp_obj}, #if MICROPY_PY_BUILTINS_FLOAT { MP_OBJ_NEW_QSTR(MP_QSTR_read_core_vbat), (mp_obj_t)&adc_all_read_core_vbat_obj}, { MP_OBJ_NEW_QSTR(MP_QSTR_read_core_vref), (mp_obj_t)&adc_all_read_core_vref_obj}, #endif }; STATIC MP_DEFINE_CONST_DICT(adc_all_locals_dict, adc_all_locals_dict_table); const mp_obj_type_t pyb_adc_all_type = { { &mp_type_type }, .name = MP_QSTR_ADCAll, .make_new = adc_all_make_new, .locals_dict = (mp_obj_t)&adc_all_locals_dict, };