/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 Artyom Skrobov * Copyright (c) 2023 Jeff Epler for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "shared/runtime/context_manager_helpers.h" #include "py/binary.h" #include "py/objproperty.h" #include "py/runtime.h" #include "py/enum.h" #include "shared-bindings/util.h" #include "shared-bindings/synthio/Biquad.h" #include "shared-bindings/synthio/Synthesizer.h" #include "shared-bindings/synthio/LFO.h" #include "shared-bindings/synthio/__init__.h" #include "supervisor/shared/translate/translate.h" //| NoteSequence = Sequence[Union[int, Note]] //| """A sequence of notes, which can each be integer MIDI note numbers or `Note` objects""" //| NoteOrNoteSequence = Union[int, Note, NoteSequence] //| """A note or sequence of notes""" //| LFOOrLFOSequence = Union["LFO", Sequence["LFO"]] //| """An LFO or a sequence of LFOs""" //| //| class Synthesizer: //| def __init__( //| self, //| *, //| sample_rate: int = 11025, //| channel_count: int = 1, //| waveform: Optional[ReadableBuffer] = None, //| envelope: Optional[Envelope] = None, //| ) -> None: //| """Create a synthesizer object. //| //| This API is experimental. //| //| Integer notes use MIDI note numbering, with 60 being C4 or Middle C, //| approximately 262Hz. Integer notes use the given waveform & envelope, //| and do not support advanced features like tremolo or vibrato. //| //| :param int sample_rate: The desired playback sample rate; higher sample rate requires more memory //| :param int channel_count: The number of output channels (1=mono, 2=stereo) //| :param ReadableBuffer waveform: A single-cycle waveform. Default is a 50% duty cycle square wave. If specified, must be a ReadableBuffer of type 'h' (signed 16 bit) //| :param Optional[Envelope] envelope: An object that defines the loudness of a note over time. The default envelope, `None` provides no ramping, voices turn instantly on and off. //| """ STATIC mp_obj_t synthio_synthesizer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { enum { ARG_sample_rate, ARG_channel_count, ARG_waveform, ARG_envelope }; static const mp_arg_t allowed_args[] = { { MP_QSTR_sample_rate, MP_ARG_INT | MP_ARG_KW_ONLY, {.u_int = 11025} }, { MP_QSTR_channel_count, MP_ARG_INT | MP_ARG_KW_ONLY, {.u_int = 1} }, { MP_QSTR_waveform, MP_ARG_OBJ | MP_ARG_KW_ONLY, {.u_obj = mp_const_none } }, { MP_QSTR_envelope, MP_ARG_OBJ | MP_ARG_KW_ONLY, {.u_obj = mp_const_none } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); synthio_synthesizer_obj_t *self = mp_obj_malloc(synthio_synthesizer_obj_t, &synthio_synthesizer_type); common_hal_synthio_synthesizer_construct(self, args[ARG_sample_rate].u_int, args[ARG_channel_count].u_int, args[ARG_waveform].u_obj, args[ARG_envelope].u_obj); return MP_OBJ_FROM_PTR(self); } STATIC void check_for_deinit(synthio_synthesizer_obj_t *self) { if (common_hal_synthio_synthesizer_deinited(self)) { raise_deinited_error(); } } //| def press(self, /, press: NoteOrNoteSequence = ()) -> None: //| """Turn some notes on. //| //| Pressing a note that was already pressed has no effect. //| //| :param NoteOrNoteSequence press: Any sequence of notes.""" STATIC mp_obj_t synthio_synthesizer_press(mp_obj_t self_in, mp_obj_t press) { synthio_synthesizer_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); common_hal_synthio_synthesizer_press(self, press); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(synthio_synthesizer_press_obj, synthio_synthesizer_press); //| def release(self, /, release: NoteOrNoteSequence = ()) -> None: //| """Turn some notes off. //| //| Releasing a note that was already released has no effect. //| //| :param NoteOrNoteSequence release: Any sequence of notes.""" STATIC mp_obj_t synthio_synthesizer_release(mp_obj_t self_in, mp_obj_t release) { synthio_synthesizer_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); common_hal_synthio_synthesizer_release(self, release); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(synthio_synthesizer_release_obj, synthio_synthesizer_release); //| def change( //| self, //| release: NoteOrNoteSequence = (), //| press: NoteOrNoteSequence = (), //| retrigger=LFOOrLFOSequence, //| ) -> None: //| """Start notes, stop them, and/or re-trigger some LFOs. //| //| The changes all happen atomically with respect to output generation. //| //| It is OK to release note that was not actually turned on. //| //| Pressing a note that was already pressed returns it to the attack phase //| but without resetting its amplitude. Releasing a note and immediately //| pressing it again returns it to the attack phase with an initial //| amplitude of 0. //| //| At the same time, the passed LFOs (if any) are retriggered. //| //| :param NoteOrNoteSequence release: Any sequence of notes. //| :param NoteOrNoteSequence press: Any sequence of notes. //| :param LFOOrLFOSequence retrigger: Any sequence of LFOs. //| //| Note: for compatibility, ``release_then_press`` may be used as an alias //| for this function. This compatibility name will be removed in 9.0.""" STATIC mp_obj_t synthio_synthesizer_change(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { enum { ARG_release, ARG_press, ARG_retrigger }; static const mp_arg_t allowed_args[] = { { MP_QSTR_release, MP_ARG_OBJ, {.u_obj = mp_const_empty_tuple } }, { MP_QSTR_press, MP_ARG_OBJ, {.u_obj = mp_const_empty_tuple } }, { MP_QSTR_retrigger, MP_ARG_OBJ, {.u_obj = mp_const_empty_tuple } }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); synthio_synthesizer_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); check_for_deinit(self); common_hal_synthio_synthesizer_release(self, args[ARG_release].u_obj); common_hal_synthio_synthesizer_press(self, args[ARG_press].u_obj); common_hal_synthio_synthesizer_retrigger(self, args[ARG_retrigger].u_obj); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(synthio_synthesizer_change_obj, 1, synthio_synthesizer_change); // //| def release_all_then_press(self, /, press: NoteOrNoteSequence) -> None: //| """Turn any currently-playing notes off, then turn on the given notes //| //| Releasing a note and immediately pressing it again returns it to the //| attack phase with an initial amplitude of 0. //| //| :param NoteOrNoteSequence press: Any sequence of notes.""" STATIC mp_obj_t synthio_synthesizer_release_all_then_press(mp_obj_t self_in, mp_obj_t press) { synthio_synthesizer_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); common_hal_synthio_synthesizer_release_all(self); common_hal_synthio_synthesizer_press(self, press); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_2(synthio_synthesizer_release_all_then_press_obj, synthio_synthesizer_release_all_then_press); // //| def release_all(self) -> None: //| """Turn any currently-playing notes off""" STATIC mp_obj_t synthio_synthesizer_release_all(mp_obj_t self_in) { synthio_synthesizer_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); common_hal_synthio_synthesizer_release_all(self); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(synthio_synthesizer_release_all_obj, synthio_synthesizer_release_all); //| def deinit(self) -> None: //| """Deinitialises the object and releases any memory resources for reuse.""" //| ... STATIC mp_obj_t synthio_synthesizer_deinit(mp_obj_t self_in) { synthio_synthesizer_obj_t *self = MP_OBJ_TO_PTR(self_in); common_hal_synthio_synthesizer_deinit(self); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(synthio_synthesizer_deinit_obj, synthio_synthesizer_deinit); //| def __enter__(self) -> Synthesizer: //| """No-op used by Context Managers.""" //| ... // Provided by context manager helper. //| //| def __exit__(self) -> None: //| """Automatically deinitializes the hardware when exiting a context. See //| :ref:`lifetime-and-contextmanagers` for more info.""" //| ... STATIC mp_obj_t synthio_synthesizer_obj___exit__(size_t n_args, const mp_obj_t *args) { (void)n_args; common_hal_synthio_synthesizer_deinit(args[0]); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(synthio_synthesizer___exit___obj, 4, 4, synthio_synthesizer_obj___exit__); //| envelope: Optional[Envelope] //| """The envelope to apply to all notes. `None`, the default envelope, instantly turns notes on and off. The envelope may be changed dynamically, but it affects all notes (even currently playing notes)""" STATIC mp_obj_t synthio_synthesizer_obj_get_envelope(mp_obj_t self_in) { synthio_synthesizer_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); return synthio_synth_envelope_get(&self->synth); } MP_DEFINE_CONST_FUN_OBJ_1(synthio_synthesizer_get_envelope_obj, synthio_synthesizer_obj_get_envelope); STATIC mp_obj_t synthio_synthesizer_obj_set_envelope(mp_obj_t self_in, mp_obj_t envelope) { synthio_synthesizer_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); synthio_synth_envelope_set(&self->synth, envelope); return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_2(synthio_synthesizer_set_envelope_obj, synthio_synthesizer_obj_set_envelope); MP_PROPERTY_GETSET(synthio_synthesizer_envelope_obj, (mp_obj_t)&synthio_synthesizer_get_envelope_obj, (mp_obj_t)&synthio_synthesizer_set_envelope_obj); //| sample_rate: int //| """32 bit value that tells how quickly samples are played in Hertz (cycles per second).""" STATIC mp_obj_t synthio_synthesizer_obj_get_sample_rate(mp_obj_t self_in) { synthio_synthesizer_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); return MP_OBJ_NEW_SMALL_INT(common_hal_synthio_synthesizer_get_sample_rate(self)); } MP_DEFINE_CONST_FUN_OBJ_1(synthio_synthesizer_get_sample_rate_obj, synthio_synthesizer_obj_get_sample_rate); MP_PROPERTY_GETTER(synthio_synthesizer_sample_rate_obj, (mp_obj_t)&synthio_synthesizer_get_sample_rate_obj); //| pressed: NoteSequence //| """A sequence of the currently pressed notes (read-only property). //| //| This does not include notes in the release phase of the envelope.""" //| STATIC mp_obj_t synthio_synthesizer_obj_get_pressed(mp_obj_t self_in) { synthio_synthesizer_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); return common_hal_synthio_synthesizer_get_pressed_notes(self); } MP_DEFINE_CONST_FUN_OBJ_1(synthio_synthesizer_get_pressed_obj, synthio_synthesizer_obj_get_pressed); MP_PROPERTY_GETTER(synthio_synthesizer_pressed_obj, (mp_obj_t)&synthio_synthesizer_get_pressed_obj); //| def note_info(self, note: Note) -> Tuple[Optional[EnvelopeState], float]: //| """Get info about a note's current envelope state //| //| If the note is currently playing (including in the release phase), the returned value gives the current envelope state and the current envelope value. //| //| If the note is not playing on this synthesizer, returns the tuple ``(None, 0.0)``.""" STATIC mp_obj_t synthio_synthesizer_obj_note_info(mp_obj_t self_in, mp_obj_t note) { synthio_synthesizer_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); mp_float_t vol = MICROPY_FLOAT_CONST(0.0); envelope_state_e state = common_hal_synthio_synthesizer_note_info(self, note, &vol); return MP_OBJ_NEW_TUPLE( cp_enum_find(&synthio_note_state_type, state), mp_obj_new_float(vol)); } MP_DEFINE_CONST_FUN_OBJ_2(synthio_synthesizer_note_info_obj, synthio_synthesizer_obj_note_info); //| blocks: List[BlockInput] //| """A list of blocks to advance whether or not they are associated with a playing note. //| //| This can be used to implement 'free-running' LFOs. LFOs associated with playing notes are advanced whether or not they are in this list. //| //| This property is read-only but its contents may be modified by e.g., calling ``synth.blocks.append()`` or ``synth.blocks.remove()``. It is initially an empty list.""" //| STATIC mp_obj_t synthio_synthesizer_obj_get_blocks(mp_obj_t self_in) { synthio_synthesizer_obj_t *self = MP_OBJ_TO_PTR(self_in); check_for_deinit(self); return common_hal_synthio_synthesizer_get_blocks(self); } MP_DEFINE_CONST_FUN_OBJ_1(synthio_synthesizer_get_blocks_obj, synthio_synthesizer_obj_get_blocks); MP_PROPERTY_GETTER(synthio_synthesizer_blocks_obj, (mp_obj_t)&synthio_synthesizer_get_blocks_obj); //| max_polyphony: int //| """Maximum polyphony of the synthesizer (read-only class property)""" //| //| def low_pass_filter(cls, frequency: float, q_factor: float = 0.7071067811865475) -> Biquad: //| """Construct a low-pass filter with the given parameters. //| //| ``frequency``, called f0 in the cookbook, is the corner frequency in Hz //| of the filter. //| //| ``q_factor``, called ``Q`` in the cookbook. Controls how peaked the response will be at the cutoff frequency. A large value makes the response more peaked. //| """ enum passfilter_arg_e { ARG_f0, ARG_Q }; // M_PI is not part of the math.h standard and may not be defined // And by defining our own we can ensure it uses the correct const format. #define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846) static const mp_arg_t passfilter_properties[] = { { MP_QSTR_frequency, MP_ARG_OBJ | MP_ARG_REQUIRED, {.u_obj = MP_ROM_NONE} }, { MP_QSTR_Q, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL } }, }; STATIC mp_obj_t synthio_synthesizer_lpf(size_t n_pos, const mp_obj_t *pos_args, mp_map_t *kw_args) { mp_arg_val_t args[MP_ARRAY_SIZE(passfilter_properties)]; mp_obj_t self_in = pos_args[0]; synthio_synthesizer_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_arg_parse_all(n_pos - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(passfilter_properties), passfilter_properties, args); mp_float_t f0 = mp_arg_validate_type_float(args[ARG_f0].u_obj, MP_QSTR_f0); mp_float_t Q = args[ARG_Q].u_obj == MP_OBJ_NULL ? MICROPY_FLOAT_CONST(0.7071067811865475) : mp_arg_validate_type_float(args[ARG_Q].u_obj, MP_QSTR_Q); mp_float_t w0 = f0 / self->synth.sample_rate * 2 * MP_PI; return common_hal_synthio_new_lpf(w0, Q); } MP_DEFINE_CONST_FUN_OBJ_KW(synthio_synthesizer_lpf_fun_obj, 1, synthio_synthesizer_lpf); //| def high_pass_filter( //| cls, frequency: float, q_factor: float = 0.7071067811865475 //| ) -> Biquad: //| """Construct a high-pass filter with the given parameters. //| //| ``frequency``, called f0 in the cookbook, is the corner frequency in Hz //| of the filter. //| //| ``q_factor``, called ``Q`` in the cookbook. Controls how peaked the response will be at the cutoff frequency. A large value makes the response more peaked. //| """ STATIC mp_obj_t synthio_synthesizer_hpf(size_t n_pos, const mp_obj_t *pos_args, mp_map_t *kw_args) { mp_arg_val_t args[MP_ARRAY_SIZE(passfilter_properties)]; mp_obj_t self_in = pos_args[0]; synthio_synthesizer_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_arg_parse_all(n_pos - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(passfilter_properties), passfilter_properties, args); mp_float_t f0 = mp_arg_validate_type_float(args[ARG_f0].u_obj, MP_QSTR_f0); mp_float_t Q = args[ARG_Q].u_obj == MP_OBJ_NULL ? MICROPY_FLOAT_CONST(0.7071067811865475) : mp_arg_validate_type_float(args[ARG_Q].u_obj, MP_QSTR_Q); mp_float_t w0 = f0 / self->synth.sample_rate * 2 * MP_PI; return common_hal_synthio_new_hpf(w0, Q); } //| def band_pass_filter( //| cls, frequency: float, q_factor: float = 0.7071067811865475 //| ) -> Biquad: //| """Construct a band-pass filter with the given parameters. //| //| ``frequency``, called f0 in the cookbook, is the center frequency in Hz //| of the filter. //| //| ``q_factor``, called ``Q`` in the cookbook. Controls how peaked the response will be at the cutoff frequency. A large value makes the response more peaked. //| //| The coefficients are scaled such that the filter has a 0dB peak gain. //| """ //| MP_DEFINE_CONST_FUN_OBJ_KW(synthio_synthesizer_hpf_fun_obj, 1, synthio_synthesizer_hpf); STATIC mp_obj_t synthio_synthesizer_bpf(size_t n_pos, const mp_obj_t *pos_args, mp_map_t *kw_args) { mp_arg_val_t args[MP_ARRAY_SIZE(passfilter_properties)]; mp_obj_t self_in = pos_args[0]; synthio_synthesizer_obj_t *self = MP_OBJ_TO_PTR(self_in); mp_arg_parse_all(n_pos - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(passfilter_properties), passfilter_properties, args); mp_float_t f0 = mp_arg_validate_type_float(args[ARG_f0].u_obj, MP_QSTR_f0); mp_float_t Q = args[ARG_Q].u_obj == MP_OBJ_NULL ? MICROPY_FLOAT_CONST(0.7071067811865475) : mp_arg_validate_type_float(args[ARG_Q].u_obj, MP_QSTR_Q); mp_float_t w0 = f0 / self->synth.sample_rate * 2 * MP_PI; return common_hal_synthio_new_bpf(w0, Q); } MP_DEFINE_CONST_FUN_OBJ_KW(synthio_synthesizer_bpf_fun_obj, 1, synthio_synthesizer_bpf); STATIC const mp_rom_map_elem_t synthio_synthesizer_locals_dict_table[] = { // Methods { MP_ROM_QSTR(MP_QSTR_press), MP_ROM_PTR(&synthio_synthesizer_press_obj) }, { MP_ROM_QSTR(MP_QSTR_release), MP_ROM_PTR(&synthio_synthesizer_release_obj) }, { MP_ROM_QSTR(MP_QSTR_release_all), MP_ROM_PTR(&synthio_synthesizer_release_all_obj) }, { MP_ROM_QSTR(MP_QSTR_change), MP_ROM_PTR(&synthio_synthesizer_change_obj) }, { MP_ROM_QSTR(MP_QSTR_release_then_press), MP_ROM_PTR(&synthio_synthesizer_change_obj) }, { MP_ROM_QSTR(MP_QSTR_release_all_then_press), MP_ROM_PTR(&synthio_synthesizer_release_all_then_press_obj) }, { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&synthio_synthesizer_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR___enter__), MP_ROM_PTR(&default___enter___obj) }, { MP_ROM_QSTR(MP_QSTR___exit__), MP_ROM_PTR(&synthio_synthesizer___exit___obj) }, { MP_ROM_QSTR(MP_QSTR_low_pass_filter), MP_ROM_PTR(&synthio_synthesizer_lpf_fun_obj) }, { MP_ROM_QSTR(MP_QSTR_high_pass_filter), MP_ROM_PTR(&synthio_synthesizer_hpf_fun_obj) }, { MP_ROM_QSTR(MP_QSTR_band_pass_filter), MP_ROM_PTR(&synthio_synthesizer_bpf_fun_obj) }, // Properties { MP_ROM_QSTR(MP_QSTR_envelope), MP_ROM_PTR(&synthio_synthesizer_envelope_obj) }, { MP_ROM_QSTR(MP_QSTR_sample_rate), MP_ROM_PTR(&synthio_synthesizer_sample_rate_obj) }, { MP_ROM_QSTR(MP_QSTR_max_polyphony), MP_ROM_INT(CIRCUITPY_SYNTHIO_MAX_CHANNELS) }, { MP_ROM_QSTR(MP_QSTR_pressed), MP_ROM_PTR(&synthio_synthesizer_pressed_obj) }, { MP_ROM_QSTR(MP_QSTR_note_info), MP_ROM_PTR(&synthio_synthesizer_note_info_obj) }, { MP_ROM_QSTR(MP_QSTR_blocks), MP_ROM_PTR(&synthio_synthesizer_blocks_obj) }, }; STATIC MP_DEFINE_CONST_DICT(synthio_synthesizer_locals_dict, synthio_synthesizer_locals_dict_table); STATIC const audiosample_p_t synthio_synthesizer_proto = { MP_PROTO_IMPLEMENT(MP_QSTR_protocol_audiosample) .sample_rate = (audiosample_sample_rate_fun)common_hal_synthio_synthesizer_get_sample_rate, .bits_per_sample = (audiosample_bits_per_sample_fun)common_hal_synthio_synthesizer_get_bits_per_sample, .channel_count = (audiosample_channel_count_fun)common_hal_synthio_synthesizer_get_channel_count, .reset_buffer = (audiosample_reset_buffer_fun)synthio_synthesizer_reset_buffer, .get_buffer = (audiosample_get_buffer_fun)synthio_synthesizer_get_buffer, .get_buffer_structure = (audiosample_get_buffer_structure_fun)synthio_synthesizer_get_buffer_structure, }; const mp_obj_type_t synthio_synthesizer_type = { { &mp_type_type }, .name = MP_QSTR_Synthesizer, .flags = MP_TYPE_FLAG_EXTENDED, .make_new = synthio_synthesizer_make_new, .locals_dict = (mp_obj_dict_t *)&synthio_synthesizer_locals_dict, MP_TYPE_EXTENDED_FIELDS( .protocol = &synthio_synthesizer_proto, ), };