/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2014 Paul Sokolovsky * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/emitglue.h" #include "py/objtype.h" #include "py/runtime.h" #include "py/bc0.h" #include "py/bc.h" #include "supervisor/linker.h" #if 0 #define TRACE(ip) printf("sp=%d ", (int)(sp - &code_state->state[0] + 1)); mp_bytecode_print2(ip, 1, code_state->fun_bc->const_table); #else #define TRACE(ip) #endif // Value stack grows up (this makes it incompatible with native C stack, but // makes sure that arguments to functions are in natural order arg1..argN // (Python semantics mandates left-to-right evaluation order, including for // function arguments). Stack pointer is pre-incremented and points at the // top element. // Exception stack also grows up, top element is also pointed at. #define DECODE_UINT \ mp_uint_t unum = 0; \ do { \ unum = (unum << 7) + (*ip & 0x7f); \ } while ((*ip++ & 0x80) != 0) #define DECODE_ULABEL size_t ulab = (ip[0] | (ip[1] << 8)); ip += 2 #define DECODE_SLABEL size_t slab = (ip[0] | (ip[1] << 8)) - 0x8000; ip += 2 #if MICROPY_PERSISTENT_CODE #define DECODE_QSTR \ qstr qst = ip[0] | ip[1] << 8; \ ip += 2; #define DECODE_PTR \ DECODE_UINT; \ void *ptr = (void *)(uintptr_t)code_state->fun_bc->const_table[unum] #define DECODE_OBJ \ DECODE_UINT; \ mp_obj_t obj = (mp_obj_t)code_state->fun_bc->const_table[unum] #else #define DECODE_QSTR qstr qst = 0; \ do { \ qst = (qst << 7) + (*ip & 0x7f); \ } while ((*ip++ & 0x80) != 0) #define DECODE_PTR \ ip = (byte *)MP_ALIGN(ip, sizeof(void *)); \ void *ptr = *(void **)ip; \ ip += sizeof(void *) #define DECODE_OBJ \ ip = (byte *)MP_ALIGN(ip, sizeof(mp_obj_t)); \ mp_obj_t obj = *(mp_obj_t *)ip; \ ip += sizeof(mp_obj_t) #endif #define PUSH(val) *++sp = (val) #define POP() (*sp--) #define TOP() (*sp) #define SET_TOP(val) *sp = (val) #if MICROPY_PY_SYS_EXC_INFO #define CLEAR_SYS_EXC_INFO() MP_STATE_VM(cur_exception) = NULL; #else #define CLEAR_SYS_EXC_INFO() #endif #define PUSH_EXC_BLOCK(with_or_finally) do { \ DECODE_ULABEL; /* except labels are always forward */ \ ++exc_sp; \ exc_sp->handler = ip + ulab; \ exc_sp->val_sp = MP_TAGPTR_MAKE(sp, ((with_or_finally) << 1) | currently_in_except_block); \ exc_sp->prev_exc = NULL; \ currently_in_except_block = 0; /* in a try block now */ \ } while (0) #define POP_EXC_BLOCK() \ currently_in_except_block = MP_TAGPTR_TAG0(exc_sp->val_sp); /* restore previous state */ \ exc_sp--; /* pop back to previous exception handler */ \ CLEAR_SYS_EXC_INFO() /* just clear sys.exc_info(), not compliant, but it shouldn't be used in 1st place */ // fastn has items in reverse order (fastn[0] is local[0], fastn[-1] is local[1], etc) // sp points to bottom of stack which grows up // returns: // MP_VM_RETURN_NORMAL, sp valid, return value in *sp // MP_VM_RETURN_YIELD, ip, sp valid, yielded value in *sp // MP_VM_RETURN_EXCEPTION, exception in state[0] mp_vm_return_kind_t PLACE_IN_ITCM(mp_execute_bytecode)(mp_code_state_t * code_state, volatile mp_obj_t inject_exc) { #define SELECTIVE_EXC_IP (0) #if SELECTIVE_EXC_IP #define MARK_EXC_IP_SELECTIVE() { code_state->ip = ip; } /* stores ip 1 byte past last opcode */ #define MARK_EXC_IP_GLOBAL() #else #define MARK_EXC_IP_SELECTIVE() #define MARK_EXC_IP_GLOBAL() { code_state->ip = ip; } /* stores ip pointing to last opcode */ #endif #if MICROPY_OPT_COMPUTED_GOTO #include "py/vmentrytable.h" #if MICROPY_OPT_COMPUTED_GOTO_SAVE_SPACE #define ONE_TRUE_DISPATCH() one_true_dispatch : do { \ TRACE(ip); \ MARK_EXC_IP_GLOBAL(); \ goto *(void *)((char *) && entry_MP_BC_LOAD_CONST_FALSE + entry_table[*ip++]); \ } while (0) #define DISPATCH() do { goto one_true_dispatch; } while (0) #else #define DISPATCH() do { \ TRACE(ip); \ MARK_EXC_IP_GLOBAL(); \ goto *entry_table[*ip++]; \ } while (0) #define ONE_TRUE_DISPATCH() DISPATCH() #endif #define DISPATCH_WITH_PEND_EXC_CHECK() goto pending_exception_check #define ENTRY(op) entry_##op #define ENTRY_DEFAULT entry_default #else #define DISPATCH() break #define DISPATCH_WITH_PEND_EXC_CHECK() goto pending_exception_check #define ENTRY(op) case op #define ENTRY_DEFAULT default #endif // nlr_raise needs to be implemented as a goto, so that the C compiler's flow analyser // sees that it's possible for us to jump from the dispatch loop to the exception // handler. Without this, the code may have a different stack layout in the dispatch // loop and the exception handler, leading to very obscure bugs. #define RAISE(o) do { nlr_pop(); nlr.ret_val = MP_OBJ_TO_PTR(o); goto exception_handler; } while (0) #if MICROPY_STACKLESS run_code_state: ; #endif // Pointers which are constant for particular invocation of mp_execute_bytecode() mp_obj_t * /*const*/ fastn; mp_exc_stack_t * /*const*/ exc_stack; { size_t n_state = mp_decode_uint_value(code_state->fun_bc->bytecode); fastn = &code_state->state[n_state - 1]; exc_stack = (mp_exc_stack_t *)(code_state->state + n_state); } // variables that are visible to the exception handler (declared volatile) volatile bool currently_in_except_block = MP_TAGPTR_TAG0(code_state->exc_sp); // 0 or 1, to detect nested exceptions mp_exc_stack_t *volatile exc_sp = MP_TAGPTR_PTR(code_state->exc_sp); // stack grows up, exc_sp points to top of stack #if MICROPY_PY_THREAD_GIL && MICROPY_PY_THREAD_GIL_VM_DIVISOR // This needs to be volatile and outside the VM loop so it persists across handling // of any exceptions. Otherwise it's possible that the VM never gives up the GIL. volatile int gil_divisor = MICROPY_PY_THREAD_GIL_VM_DIVISOR; #endif // outer exception handling loop for (;;) { nlr_buf_t nlr; outer_dispatch_loop: if (nlr_push(&nlr) == 0) { // local variables that are not visible to the exception handler const byte *ip = code_state->ip; mp_obj_t *sp = code_state->sp; mp_obj_t obj_shared; MICROPY_VM_HOOK_INIT // If we have exception to inject, now that we finish setting up // execution context, raise it. This works as if RAISE_VARARGS // bytecode was executed. // Injecting exc into yield from generator is a special case, // handled by MP_BC_YIELD_FROM itself if (inject_exc != MP_OBJ_NULL && *ip != MP_BC_YIELD_FROM) { mp_obj_t exc = inject_exc; inject_exc = MP_OBJ_NULL; exc = mp_make_raise_obj(exc); RAISE(exc); } // loop to execute byte code for (;;) { dispatch_loop: #if MICROPY_OPT_COMPUTED_GOTO ONE_TRUE_DISPATCH(); #else TRACE(ip); MARK_EXC_IP_GLOBAL(); switch (*ip++) { #endif ENTRY(MP_BC_LOAD_CONST_FALSE) : PUSH(mp_const_false); DISPATCH(); ENTRY(MP_BC_LOAD_CONST_NONE) : PUSH(mp_const_none); DISPATCH(); ENTRY(MP_BC_LOAD_CONST_TRUE) : PUSH(mp_const_true); DISPATCH(); ENTRY(MP_BC_LOAD_CONST_SMALL_INT) : { mp_int_t num = 0; if ((ip[0] & 0x40) != 0) { // Number is negative num--; } do { num = (num << 7) | (*ip & 0x7f); } while ((*ip++ & 0x80) != 0); PUSH(MP_OBJ_NEW_SMALL_INT(num)); DISPATCH(); } ENTRY(MP_BC_LOAD_CONST_STRING) : { DECODE_QSTR; PUSH(MP_OBJ_NEW_QSTR(qst)); DISPATCH(); } ENTRY(MP_BC_LOAD_CONST_OBJ) : { DECODE_OBJ; PUSH(obj); DISPATCH(); } ENTRY(MP_BC_LOAD_NULL) : PUSH(MP_OBJ_NULL); DISPATCH(); ENTRY(MP_BC_LOAD_FAST_N) : { DECODE_UINT; obj_shared = fastn[-unum]; load_check: if (obj_shared == MP_OBJ_NULL) { local_name_error: { MARK_EXC_IP_SELECTIVE(); mp_obj_t obj = mp_obj_new_exception_msg(&mp_type_NameError, translate("local variable referenced before assignment")); RAISE(obj); } } PUSH(obj_shared); DISPATCH(); } ENTRY(MP_BC_LOAD_DEREF) : { DECODE_UINT; obj_shared = mp_obj_cell_get(fastn[-unum]); goto load_check; } #if !MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE ENTRY(MP_BC_LOAD_NAME) : { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; PUSH(mp_load_name(qst)); DISPATCH(); } #else ENTRY(MP_BC_LOAD_NAME) : { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_obj_t key = MP_OBJ_NEW_QSTR(qst); mp_uint_t x = *ip; if (x < mp_locals_get()->map.alloc && mp_locals_get()->map.table[x].key == key) { PUSH(mp_locals_get()->map.table[x].value); } else { mp_map_elem_t *elem = mp_map_lookup(&mp_locals_get()->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP); if (elem != NULL) { *(byte *)ip = (elem - &mp_locals_get()->map.table[0]) & 0xff; PUSH(elem->value); } else { PUSH(mp_load_name(MP_OBJ_QSTR_VALUE(key))); } } ip++; DISPATCH(); } #endif #if !MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE ENTRY(MP_BC_LOAD_GLOBAL) : { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; PUSH(mp_load_global(qst)); DISPATCH(); } #else ENTRY(MP_BC_LOAD_GLOBAL) : { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_obj_t key = MP_OBJ_NEW_QSTR(qst); mp_uint_t x = *ip; if (x < mp_globals_get()->map.alloc && mp_globals_get()->map.table[x].key == key) { PUSH(mp_globals_get()->map.table[x].value); } else { mp_map_elem_t *elem = mp_map_lookup(&mp_globals_get()->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP); if (elem != NULL) { *(byte *)ip = (elem - &mp_globals_get()->map.table[0]) & 0xff; PUSH(elem->value); } else { PUSH(mp_load_global(MP_OBJ_QSTR_VALUE(key))); } } ip++; DISPATCH(); } #endif #if !MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE ENTRY(MP_BC_LOAD_ATTR) : { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; SET_TOP(mp_load_attr(TOP(), qst)); DISPATCH(); } #else ENTRY(MP_BC_LOAD_ATTR) : { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_obj_t top = TOP(); if (mp_obj_is_instance_type(mp_obj_get_type(top))) { mp_obj_instance_t *self = MP_OBJ_TO_PTR(top); mp_uint_t x = *ip; mp_obj_t key = MP_OBJ_NEW_QSTR(qst); mp_map_elem_t *elem; if (x < self->members.alloc && self->members.table[x].key == key) { elem = &self->members.table[x]; } else { elem = mp_map_lookup(&self->members, key, MP_MAP_LOOKUP); if (elem != NULL) { *(byte *)ip = elem - &self->members.table[0]; } else { goto load_attr_cache_fail; } } SET_TOP(elem->value); ip++; DISPATCH(); } load_attr_cache_fail: SET_TOP(mp_load_attr(top, qst)); ip++; DISPATCH(); } #endif ENTRY(MP_BC_LOAD_METHOD) : { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_load_method(*sp, qst, sp); sp += 1; DISPATCH(); } ENTRY(MP_BC_LOAD_SUPER_METHOD) : { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; sp -= 1; mp_load_super_method(qst, sp - 1); DISPATCH(); } ENTRY(MP_BC_LOAD_BUILD_CLASS) : MARK_EXC_IP_SELECTIVE(); PUSH(mp_load_build_class()); DISPATCH(); ENTRY(MP_BC_LOAD_SUBSCR) : { MARK_EXC_IP_SELECTIVE(); mp_obj_t index = POP(); SET_TOP(mp_obj_subscr(TOP(), index, MP_OBJ_SENTINEL)); DISPATCH(); } ENTRY(MP_BC_STORE_FAST_N) : { DECODE_UINT; fastn[-unum] = POP(); DISPATCH(); } ENTRY(MP_BC_STORE_DEREF) : { DECODE_UINT; mp_obj_cell_set(fastn[-unum], POP()); DISPATCH(); } ENTRY(MP_BC_STORE_NAME) : { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_store_name(qst, POP()); DISPATCH(); } ENTRY(MP_BC_STORE_GLOBAL) : { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_store_global(qst, POP()); DISPATCH(); } #if !MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE ENTRY(MP_BC_STORE_ATTR) : { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_store_attr(sp[0], qst, sp[-1]); sp -= 2; DISPATCH(); } #else // This caching code works with MICROPY_PY_BUILTINS_PROPERTY and/or // MICROPY_PY_DESCRIPTORS enabled because if the attr exists in // self->members then it can't be a property or have descriptors. A // consequence of this is that we can't use MP_MAP_LOOKUP_ADD_IF_NOT_FOUND // in the fast-path below, because that store could override a property. ENTRY(MP_BC_STORE_ATTR) : { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_obj_t top = TOP(); if (mp_obj_is_instance_type(mp_obj_get_type(top)) && sp[-1] != MP_OBJ_NULL) { mp_obj_instance_t *self = MP_OBJ_TO_PTR(top); mp_uint_t x = *ip; mp_obj_t key = MP_OBJ_NEW_QSTR(qst); mp_map_elem_t *elem; if (x < self->members.alloc && self->members.table[x].key == key) { elem = &self->members.table[x]; } else { elem = mp_map_lookup(&self->members, key, MP_MAP_LOOKUP); if (elem != NULL) { *(byte *)ip = elem - &self->members.table[0]; } else { goto store_attr_cache_fail; } } elem->value = sp[-1]; sp -= 2; ip++; DISPATCH(); } store_attr_cache_fail: mp_store_attr(sp[0], qst, sp[-1]); sp -= 2; ip++; DISPATCH(); } #endif ENTRY(MP_BC_STORE_SUBSCR) : MARK_EXC_IP_SELECTIVE(); mp_obj_subscr(sp[-1], sp[0], sp[-2]); sp -= 3; DISPATCH(); ENTRY(MP_BC_DELETE_FAST) : { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; if (fastn[-unum] == MP_OBJ_NULL) { goto local_name_error; } fastn[-unum] = MP_OBJ_NULL; DISPATCH(); } ENTRY(MP_BC_DELETE_DEREF) : { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; if (mp_obj_cell_get(fastn[-unum]) == MP_OBJ_NULL) { goto local_name_error; } mp_obj_cell_set(fastn[-unum], MP_OBJ_NULL); DISPATCH(); } ENTRY(MP_BC_DELETE_NAME) : { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_delete_name(qst); DISPATCH(); } ENTRY(MP_BC_DELETE_GLOBAL) : { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_delete_global(qst); DISPATCH(); } ENTRY(MP_BC_DUP_TOP) : { mp_obj_t top = TOP(); PUSH(top); DISPATCH(); } ENTRY(MP_BC_DUP_TOP_TWO) : sp += 2; sp[0] = sp[-2]; sp[-1] = sp[-3]; DISPATCH(); ENTRY(MP_BC_POP_TOP) : sp -= 1; DISPATCH(); ENTRY(MP_BC_ROT_TWO) : { mp_obj_t top = sp[0]; sp[0] = sp[-1]; sp[-1] = top; DISPATCH(); } ENTRY(MP_BC_ROT_THREE) : { mp_obj_t top = sp[0]; sp[0] = sp[-1]; sp[-1] = sp[-2]; sp[-2] = top; DISPATCH(); } ENTRY(MP_BC_JUMP) : { DECODE_SLABEL; ip += slab; DISPATCH_WITH_PEND_EXC_CHECK(); } ENTRY(MP_BC_POP_JUMP_IF_TRUE) : { DECODE_SLABEL; if (mp_obj_is_true(POP())) { ip += slab; } DISPATCH_WITH_PEND_EXC_CHECK(); } ENTRY(MP_BC_POP_JUMP_IF_FALSE) : { DECODE_SLABEL; if (!mp_obj_is_true(POP())) { ip += slab; } DISPATCH_WITH_PEND_EXC_CHECK(); } ENTRY(MP_BC_JUMP_IF_TRUE_OR_POP) : { DECODE_SLABEL; if (mp_obj_is_true(TOP())) { ip += slab; } else { sp--; } DISPATCH_WITH_PEND_EXC_CHECK(); } ENTRY(MP_BC_JUMP_IF_FALSE_OR_POP) : { DECODE_SLABEL; if (mp_obj_is_true(TOP())) { sp--; } else { ip += slab; } DISPATCH_WITH_PEND_EXC_CHECK(); } ENTRY(MP_BC_SETUP_WITH) : { MARK_EXC_IP_SELECTIVE(); // stack: (..., ctx_mgr) mp_obj_t obj = TOP(); mp_load_method(obj, MP_QSTR___exit__, sp); mp_load_method(obj, MP_QSTR___enter__, sp + 2); mp_obj_t ret = mp_call_method_n_kw(0, 0, sp + 2); sp += 1; PUSH_EXC_BLOCK(1); PUSH(ret); // stack: (..., __exit__, ctx_mgr, as_value) DISPATCH(); } ENTRY(MP_BC_WITH_CLEANUP) : { MARK_EXC_IP_SELECTIVE(); // Arriving here, there's "exception control block" on top of stack, // and __exit__ method (with self) underneath it. Bytecode calls __exit__, // and "deletes" it off stack, shifting "exception control block" // to its place. // The bytecode emitter ensures that there is enough space on the Python // value stack to hold the __exit__ method plus an additional 4 entries. if (TOP() == mp_const_none) { // stack: (..., __exit__, ctx_mgr, None) sp[1] = mp_const_none; sp[2] = mp_const_none; sp -= 2; mp_call_method_n_kw(3, 0, sp); SET_TOP(mp_const_none); } else if (MP_OBJ_IS_SMALL_INT(TOP())) { // Getting here there are two distinct cases: // - unwind return, stack: (..., __exit__, ctx_mgr, ret_val, SMALL_INT(-1)) // - unwind jump, stack: (..., __exit__, ctx_mgr, dest_ip, SMALL_INT(num_exc)) // For both cases we do exactly the same thing. mp_obj_t data = sp[-1]; mp_obj_t cause = sp[0]; sp[-1] = mp_const_none; sp[0] = mp_const_none; sp[1] = mp_const_none; mp_call_method_n_kw(3, 0, sp - 3); sp[-3] = data; sp[-2] = cause; sp -= 2; // we removed (__exit__, ctx_mgr) } else { assert(mp_obj_is_exception_instance(TOP())); // stack: (..., __exit__, ctx_mgr, exc_instance) // Need to pass (exc_type, exc_instance, None) as arguments to __exit__. sp[1] = sp[0]; sp[0] = MP_OBJ_FROM_PTR(mp_obj_get_type(sp[0])); sp[2] = mp_const_none; sp -= 2; mp_obj_t ret_value = mp_call_method_n_kw(3, 0, sp); if (mp_obj_is_true(ret_value)) { // We need to silence/swallow the exception. This is done // by popping the exception and the __exit__ handler and // replacing it with None, which signals END_FINALLY to just // execute the finally handler normally. SET_TOP(mp_const_none); assert(exc_sp >= exc_stack); POP_EXC_BLOCK(); } else { // We need to re-raise the exception. We pop __exit__ handler // by copying the exception instance down to the new top-of-stack. sp[0] = sp[3]; } } DISPATCH(); } ENTRY(MP_BC_UNWIND_JUMP) : { MARK_EXC_IP_SELECTIVE(); DECODE_SLABEL; PUSH((mp_obj_t)(mp_uint_t)(uintptr_t)(ip + slab)); // push destination ip for jump PUSH((mp_obj_t)(mp_uint_t)(*ip)); // push number of exception handlers to unwind (0x80 bit set if we also need to pop stack) unwind_jump:; mp_uint_t unum = (mp_uint_t)POP(); // get number of exception handlers to unwind while ((unum & 0x7f) > 0) { unum -= 1; assert(exc_sp >= exc_stack); if (MP_TAGPTR_TAG1(exc_sp->val_sp)) { // Getting here the stack looks like: // (..., X, dest_ip) // where X is pointed to by exc_sp->val_sp and in the case // of a "with" block contains the context manager info. // We're going to run "finally" code as a coroutine // (not calling it recursively). Set up a sentinel // on the stack so it can return back to us when it is // done (when WITH_CLEANUP or END_FINALLY reached). // The sentinel is the number of exception handlers left to // unwind, which is a non-negative integer. PUSH(MP_OBJ_NEW_SMALL_INT(unum)); ip = exc_sp->handler; // get exception handler byte code address exc_sp--; // pop exception handler goto dispatch_loop; // run the exception handler } POP_EXC_BLOCK(); } ip = (const byte *)MP_OBJ_TO_PTR(POP()); // pop destination ip for jump if (unum != 0) { // pop the exhausted iterator sp -= MP_OBJ_ITER_BUF_NSLOTS; } DISPATCH_WITH_PEND_EXC_CHECK(); } // matched against: POP_BLOCK or POP_EXCEPT (anything else?) ENTRY(MP_BC_SETUP_EXCEPT) : ENTRY(MP_BC_SETUP_FINALLY) : { MARK_EXC_IP_SELECTIVE(); #if SELECTIVE_EXC_IP PUSH_EXC_BLOCK((code_state->ip[-1] == MP_BC_SETUP_FINALLY) ? 1 : 0); #else PUSH_EXC_BLOCK((code_state->ip[0] == MP_BC_SETUP_FINALLY) ? 1 : 0); #endif DISPATCH(); } ENTRY(MP_BC_END_FINALLY) : MARK_EXC_IP_SELECTIVE(); // if TOS is None, just pops it and continues // if TOS is an integer, finishes coroutine and returns control to caller // if TOS is an exception, reraises the exception if (TOP() == mp_const_none) { sp--; } else if (MP_OBJ_IS_SMALL_INT(TOP())) { // We finished "finally" coroutine and now dispatch back // to our caller, based on TOS value mp_int_t cause = MP_OBJ_SMALL_INT_VALUE(POP()); if (cause < 0) { // A negative cause indicates unwind return goto unwind_return; } else { // Otherwise it's an unwind jump and we must push as a raw // number the number of exception handlers to unwind PUSH((mp_obj_t)cause); goto unwind_jump; } } else { assert(mp_obj_is_exception_instance(TOP())); RAISE(TOP()); } DISPATCH(); ENTRY(MP_BC_GET_ITER) : MARK_EXC_IP_SELECTIVE(); SET_TOP(mp_getiter(TOP(), NULL)); DISPATCH(); // An iterator for a for-loop takes MP_OBJ_ITER_BUF_NSLOTS slots on // the Python value stack. These slots are either used to store the // iterator object itself, or the first slot is MP_OBJ_NULL and // the second slot holds a reference to the iterator object. ENTRY(MP_BC_GET_ITER_STACK) : { MARK_EXC_IP_SELECTIVE(); mp_obj_t obj = TOP(); mp_obj_iter_buf_t *iter_buf = (mp_obj_iter_buf_t *)sp; sp += MP_OBJ_ITER_BUF_NSLOTS - 1; obj = mp_getiter(obj, iter_buf); if (obj != MP_OBJ_FROM_PTR(iter_buf)) { // Iterator didn't use the stack so indicate that with MP_OBJ_NULL. sp[-MP_OBJ_ITER_BUF_NSLOTS + 1] = MP_OBJ_NULL; sp[-MP_OBJ_ITER_BUF_NSLOTS + 2] = obj; } DISPATCH(); } ENTRY(MP_BC_FOR_ITER) : { MARK_EXC_IP_SELECTIVE(); DECODE_ULABEL; // the jump offset if iteration finishes; for labels are always forward code_state->sp = sp; mp_obj_t obj; if (sp[-MP_OBJ_ITER_BUF_NSLOTS + 1] == MP_OBJ_NULL) { obj = sp[-MP_OBJ_ITER_BUF_NSLOTS + 2]; } else { obj = MP_OBJ_FROM_PTR(&sp[-MP_OBJ_ITER_BUF_NSLOTS + 1]); } mp_obj_t value = mp_iternext_allow_raise(obj); if (value == MP_OBJ_STOP_ITERATION) { sp -= MP_OBJ_ITER_BUF_NSLOTS; // pop the exhausted iterator ip += ulab; // jump to after for-block } else { PUSH(value); // push the next iteration value } DISPATCH_WITH_PEND_EXC_CHECK(); } // matched against: SETUP_EXCEPT, SETUP_FINALLY, SETUP_WITH ENTRY(MP_BC_POP_BLOCK) : // we are exiting an exception handler, so pop the last one of the exception-stack assert(exc_sp >= exc_stack); POP_EXC_BLOCK(); DISPATCH(); // matched against: SETUP_EXCEPT ENTRY(MP_BC_POP_EXCEPT) : assert(exc_sp >= exc_stack); assert(currently_in_except_block); POP_EXC_BLOCK(); DISPATCH(); ENTRY(MP_BC_BUILD_TUPLE) : { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; sp -= unum - 1; SET_TOP(mp_obj_new_tuple(unum, sp)); DISPATCH(); } ENTRY(MP_BC_BUILD_LIST) : { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; sp -= unum - 1; SET_TOP(mp_obj_new_list(unum, sp)); DISPATCH(); } ENTRY(MP_BC_BUILD_MAP) : { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; PUSH(mp_obj_new_dict(unum)); DISPATCH(); } ENTRY(MP_BC_STORE_MAP) : MARK_EXC_IP_SELECTIVE(); sp -= 2; mp_obj_dict_store(sp[0], sp[2], sp[1]); DISPATCH(); #if MICROPY_PY_BUILTINS_SET ENTRY(MP_BC_BUILD_SET) : { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; sp -= unum - 1; SET_TOP(mp_obj_new_set(unum, sp)); DISPATCH(); } #endif #if MICROPY_PY_BUILTINS_SLICE ENTRY(MP_BC_BUILD_SLICE) : { MARK_EXC_IP_SELECTIVE(); mp_obj_t step = mp_const_none; if (*ip++ == 3) { // 3-argument slice includes step step = POP(); } mp_obj_t stop = POP(); mp_obj_t start = TOP(); SET_TOP(mp_obj_new_slice(start, stop, step)); DISPATCH(); } #endif ENTRY(MP_BC_STORE_COMP) : { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; mp_obj_t obj = sp[-(unum >> 2)]; if ((unum & 3) == 0) { mp_obj_list_append(obj, sp[0]); sp--; } else if (!MICROPY_PY_BUILTINS_SET || (unum & 3) == 1) { mp_obj_dict_store(obj, sp[0], sp[-1]); sp -= 2; #if MICROPY_PY_BUILTINS_SET } else { mp_obj_set_store(obj, sp[0]); sp--; #endif } DISPATCH(); } ENTRY(MP_BC_UNPACK_SEQUENCE) : { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; mp_unpack_sequence(sp[0], unum, sp); sp += unum - 1; DISPATCH(); } ENTRY(MP_BC_UNPACK_EX) : { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; mp_unpack_ex(sp[0], unum, sp); sp += (unum & 0xff) + ((unum >> 8) & 0xff); DISPATCH(); } ENTRY(MP_BC_MAKE_FUNCTION) : { DECODE_PTR; PUSH(mp_make_function_from_raw_code(ptr, MP_OBJ_NULL, MP_OBJ_NULL)); DISPATCH(); } ENTRY(MP_BC_MAKE_FUNCTION_DEFARGS) : { DECODE_PTR; // Stack layout: def_tuple def_dict <- TOS mp_obj_t def_dict = POP(); SET_TOP(mp_make_function_from_raw_code(ptr, TOP(), def_dict)); DISPATCH(); } ENTRY(MP_BC_MAKE_CLOSURE) : { DECODE_PTR; size_t n_closed_over = *ip++; // Stack layout: closed_overs <- TOS sp -= n_closed_over - 1; SET_TOP(mp_make_closure_from_raw_code(ptr, n_closed_over, sp)); DISPATCH(); } ENTRY(MP_BC_MAKE_CLOSURE_DEFARGS) : { DECODE_PTR; size_t n_closed_over = *ip++; // Stack layout: def_tuple def_dict closed_overs <- TOS sp -= 2 + n_closed_over - 1; SET_TOP(mp_make_closure_from_raw_code(ptr, 0x100 | n_closed_over, sp)); DISPATCH(); } ENTRY(MP_BC_CALL_FUNCTION) : { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; // unum & 0xff == n_positional // (unum >> 8) & 0xff == n_keyword sp -= (unum & 0xff) + ((unum >> 7) & 0x1fe); #if MICROPY_STACKLESS if (mp_obj_get_type(*sp) == &mp_type_fun_bc) { code_state->ip = ip; code_state->sp = sp; code_state->exc_sp = MP_TAGPTR_MAKE(exc_sp, currently_in_except_block); mp_code_state_t *new_state = mp_obj_fun_bc_prepare_codestate(*sp, unum & 0xff, (unum >> 8) & 0xff, sp + 1); #if !MICROPY_ENABLE_PYSTACK if (new_state == NULL) { // Couldn't allocate codestate on heap: in the strict case raise // an exception, otherwise just fall through to stack allocation. #if MICROPY_STACKLESS_STRICT deep_recursion_error: mp_raise_recursion_depth(); #endif } else #endif { new_state->prev = code_state; code_state = new_state; nlr_pop(); goto run_code_state; } } #endif SET_TOP(mp_call_function_n_kw(*sp, unum & 0xff, (unum >> 8) & 0xff, sp + 1)); DISPATCH(); } ENTRY(MP_BC_CALL_FUNCTION_VAR_KW) : { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; // unum & 0xff == n_positional // (unum >> 8) & 0xff == n_keyword // We have following stack layout here: // fun arg0 arg1 ... kw0 val0 kw1 val1 ... seq dict <- TOS sp -= (unum & 0xff) + ((unum >> 7) & 0x1fe) + 2; #if MICROPY_STACKLESS if (mp_obj_get_type(*sp) == &mp_type_fun_bc) { code_state->ip = ip; code_state->sp = sp; code_state->exc_sp = MP_TAGPTR_MAKE(exc_sp, currently_in_except_block); mp_call_args_t out_args; mp_call_prepare_args_n_kw_var(false, unum, sp, &out_args); mp_code_state_t *new_state = mp_obj_fun_bc_prepare_codestate(out_args.fun, out_args.n_args, out_args.n_kw, out_args.args); #if !MICROPY_ENABLE_PYSTACK // Freeing args at this point does not follow a LIFO order so only do it if // pystack is not enabled. For pystack, they are freed when code_state is. mp_nonlocal_free(out_args.args, out_args.n_alloc * sizeof(mp_obj_t)); #endif #if !MICROPY_ENABLE_PYSTACK if (new_state == NULL) { // Couldn't allocate codestate on heap: in the strict case raise // an exception, otherwise just fall through to stack allocation. #if MICROPY_STACKLESS_STRICT goto deep_recursion_error; #endif } else #endif { new_state->prev = code_state; code_state = new_state; nlr_pop(); goto run_code_state; } } #endif SET_TOP(mp_call_method_n_kw_var(false, unum, sp)); DISPATCH(); } ENTRY(MP_BC_CALL_METHOD) : { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; // unum & 0xff == n_positional // (unum >> 8) & 0xff == n_keyword sp -= (unum & 0xff) + ((unum >> 7) & 0x1fe) + 1; #if MICROPY_STACKLESS if (mp_obj_get_type(*sp) == &mp_type_fun_bc) { code_state->ip = ip; code_state->sp = sp; code_state->exc_sp = MP_TAGPTR_MAKE(exc_sp, currently_in_except_block); size_t n_args = unum & 0xff; size_t n_kw = (unum >> 8) & 0xff; int adjust = (sp[1] == MP_OBJ_NULL) ? 0 : 1; mp_code_state_t *new_state = mp_obj_fun_bc_prepare_codestate(*sp, n_args + adjust, n_kw, sp + 2 - adjust); #if !MICROPY_ENABLE_PYSTACK if (new_state == NULL) { // Couldn't allocate codestate on heap: in the strict case raise // an exception, otherwise just fall through to stack allocation. #if MICROPY_STACKLESS_STRICT goto deep_recursion_error; #endif } else #endif { new_state->prev = code_state; code_state = new_state; nlr_pop(); goto run_code_state; } } #endif SET_TOP(mp_call_method_n_kw(unum & 0xff, (unum >> 8) & 0xff, sp)); DISPATCH_WITH_PEND_EXC_CHECK(); } ENTRY(MP_BC_CALL_METHOD_VAR_KW) : { MARK_EXC_IP_SELECTIVE(); DECODE_UINT; // unum & 0xff == n_positional // (unum >> 8) & 0xff == n_keyword // We have following stack layout here: // fun self arg0 arg1 ... kw0 val0 kw1 val1 ... seq dict <- TOS sp -= (unum & 0xff) + ((unum >> 7) & 0x1fe) + 3; #if MICROPY_STACKLESS if (mp_obj_get_type(*sp) == &mp_type_fun_bc) { code_state->ip = ip; code_state->sp = sp; code_state->exc_sp = MP_TAGPTR_MAKE(exc_sp, currently_in_except_block); mp_call_args_t out_args; mp_call_prepare_args_n_kw_var(true, unum, sp, &out_args); mp_code_state_t *new_state = mp_obj_fun_bc_prepare_codestate(out_args.fun, out_args.n_args, out_args.n_kw, out_args.args); #if !MICROPY_ENABLE_PYSTACK // Freeing args at this point does not follow a LIFO order so only do it if // pystack is not enabled. For pystack, they are freed when code_state is. mp_nonlocal_free(out_args.args, out_args.n_alloc * sizeof(mp_obj_t)); #endif #if !MICROPY_ENABLE_PYSTACK if (new_state == NULL) { // Couldn't allocate codestate on heap: in the strict case raise // an exception, otherwise just fall through to stack allocation. #if MICROPY_STACKLESS_STRICT goto deep_recursion_error; #endif } else #endif { new_state->prev = code_state; code_state = new_state; nlr_pop(); goto run_code_state; } } #endif SET_TOP(mp_call_method_n_kw_var(true, unum, sp)); DISPATCH(); } ENTRY(MP_BC_RETURN_VALUE) : MARK_EXC_IP_SELECTIVE(); unwind_return: // Search for and execute finally handlers that aren't already active while (exc_sp >= exc_stack) { if (!currently_in_except_block && MP_TAGPTR_TAG1(exc_sp->val_sp)) { // Found a finally handler that isn't active. // Getting here the stack looks like: // (..., X, [iter0, iter1, ...,] ret_val) // where X is pointed to by exc_sp->val_sp and in the case // of a "with" block contains the context manager info. // There may be 0 or more for-iterators between X and the // return value, and these must be removed before control can // pass to the finally code. We simply copy the ret_value down // over these iterators, if they exist. If they don't then the // following is a null operation. mp_obj_t *finally_sp = MP_TAGPTR_PTR(exc_sp->val_sp); finally_sp[1] = sp[0]; sp = &finally_sp[1]; // We're going to run "finally" code as a coroutine // (not calling it recursively). Set up a sentinel // on a stack so it can return back to us when it is // done (when WITH_CLEANUP or END_FINALLY reached). PUSH(MP_OBJ_NEW_SMALL_INT(-1)); ip = exc_sp->handler; POP_EXC_BLOCK(); goto dispatch_loop; } POP_EXC_BLOCK(); } nlr_pop(); code_state->sp = sp; assert(exc_sp == exc_stack - 1); MICROPY_VM_HOOK_RETURN #if MICROPY_STACKLESS if (code_state->prev != NULL) { mp_obj_t res = *sp; mp_globals_set(code_state->old_globals); mp_code_state_t *new_code_state = code_state->prev; #if MICROPY_ENABLE_PYSTACK // Free code_state, and args allocated by mp_call_prepare_args_n_kw_var // (The latter is implicitly freed when using pystack due to its LIFO nature.) // The sizeof in the following statement does not include the size of the variable // part of the struct. This arg is anyway not used if pystack is enabled. mp_nonlocal_free(code_state, sizeof(mp_code_state_t)); #endif code_state = new_code_state; *code_state->sp = res; goto run_code_state; } #endif return MP_VM_RETURN_NORMAL; ENTRY(MP_BC_RAISE_VARARGS) : { MARK_EXC_IP_SELECTIVE(); mp_uint_t unum = *ip; mp_obj_t obj; if (unum == 2) { mp_warning("exception chaining not supported"); // ignore (pop) "from" argument sp--; } if (unum == 0) { // search for the inner-most previous exception, to reraise it obj = MP_OBJ_NULL; for (mp_exc_stack_t *e = exc_sp; e >= exc_stack; e--) { if (e->prev_exc != NULL) { obj = MP_OBJ_FROM_PTR(e->prev_exc); break; } } if (obj == MP_OBJ_NULL) { obj = mp_obj_new_exception_msg(&mp_type_RuntimeError, translate("no active exception to reraise")); RAISE(obj); } } else { obj = TOP(); } obj = mp_make_raise_obj(obj); RAISE(obj); } ENTRY(MP_BC_YIELD_VALUE) : yield: nlr_pop(); code_state->ip = ip; code_state->sp = sp; code_state->exc_sp = MP_TAGPTR_MAKE(exc_sp, currently_in_except_block); return MP_VM_RETURN_YIELD; ENTRY(MP_BC_YIELD_FROM) : { MARK_EXC_IP_SELECTIVE(); // #define EXC_MATCH(exc, type) MP_OBJ_IS_TYPE(exc, type) #define EXC_MATCH(exc, type) mp_obj_exception_match(exc, type) #define GENERATOR_EXIT_IF_NEEDED(t) if (t != MP_OBJ_NULL && EXC_MATCH(t, MP_OBJ_FROM_PTR(&mp_type_GeneratorExit))) { mp_obj_t raise_t = mp_make_raise_obj(t); RAISE(raise_t); \ } mp_vm_return_kind_t ret_kind; mp_obj_t send_value = POP(); mp_obj_t t_exc = MP_OBJ_NULL; mp_obj_t ret_value; code_state->sp = sp; // Save sp because it's needed if mp_resume raises StopIteration if (inject_exc != MP_OBJ_NULL) { t_exc = inject_exc; inject_exc = MP_OBJ_NULL; ret_kind = mp_resume(TOP(), MP_OBJ_NULL, t_exc, &ret_value); } else { ret_kind = mp_resume(TOP(), send_value, MP_OBJ_NULL, &ret_value); } if (ret_kind == MP_VM_RETURN_YIELD) { ip--; PUSH(ret_value); goto yield; } else if (ret_kind == MP_VM_RETURN_NORMAL) { // Pop exhausted gen sp--; if (ret_value == MP_OBJ_STOP_ITERATION) { // Optimize StopIteration // TODO: get StopIteration's value PUSH(mp_const_none); } else { PUSH(ret_value); } // If we injected GeneratorExit downstream, then even // if it was swallowed, we re-raise GeneratorExit GENERATOR_EXIT_IF_NEEDED(t_exc); DISPATCH(); } else { assert(ret_kind == MP_VM_RETURN_EXCEPTION); // Pop exhausted gen sp--; if (EXC_MATCH(ret_value, MP_OBJ_FROM_PTR(&mp_type_StopIteration))) { PUSH(mp_obj_exception_get_value(ret_value)); // If we injected GeneratorExit downstream, then even // if it was swallowed, we re-raise GeneratorExit GENERATOR_EXIT_IF_NEEDED(t_exc); DISPATCH(); } else { RAISE(ret_value); } } } ENTRY(MP_BC_IMPORT_NAME) : { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_obj_t obj = POP(); SET_TOP(mp_import_name(qst, obj, TOP())); DISPATCH(); } ENTRY(MP_BC_IMPORT_FROM) : { MARK_EXC_IP_SELECTIVE(); DECODE_QSTR; mp_obj_t obj = mp_import_from(TOP(), qst); PUSH(obj); DISPATCH(); } ENTRY(MP_BC_IMPORT_STAR) : MARK_EXC_IP_SELECTIVE(); mp_import_all(POP()); DISPATCH(); #if MICROPY_OPT_COMPUTED_GOTO ENTRY(MP_BC_LOAD_CONST_SMALL_INT_MULTI) : PUSH(MP_OBJ_NEW_SMALL_INT((mp_int_t)ip[-1] - MP_BC_LOAD_CONST_SMALL_INT_MULTI - 16)); DISPATCH(); ENTRY(MP_BC_LOAD_FAST_MULTI) : obj_shared = fastn[MP_BC_LOAD_FAST_MULTI - (mp_int_t)ip[-1]]; goto load_check; ENTRY(MP_BC_STORE_FAST_MULTI) : fastn[MP_BC_STORE_FAST_MULTI - (mp_int_t)ip[-1]] = POP(); DISPATCH(); ENTRY(MP_BC_UNARY_OP_MULTI) : MARK_EXC_IP_SELECTIVE(); SET_TOP(mp_unary_op(ip[-1] - MP_BC_UNARY_OP_MULTI, TOP())); DISPATCH(); ENTRY(MP_BC_BINARY_OP_MULTI) : { MARK_EXC_IP_SELECTIVE(); mp_obj_t rhs = POP(); mp_obj_t lhs = TOP(); SET_TOP(mp_binary_op(ip[-1] - MP_BC_BINARY_OP_MULTI, lhs, rhs)); DISPATCH(); } ENTRY_DEFAULT: MARK_EXC_IP_SELECTIVE(); #else ENTRY_DEFAULT: if (ip[-1] < MP_BC_LOAD_CONST_SMALL_INT_MULTI + 64) { PUSH(MP_OBJ_NEW_SMALL_INT((mp_int_t)ip[-1] - MP_BC_LOAD_CONST_SMALL_INT_MULTI - 16)); DISPATCH(); } else if (ip[-1] < MP_BC_LOAD_FAST_MULTI + 16) { obj_shared = fastn[MP_BC_LOAD_FAST_MULTI - (mp_int_t)ip[-1]]; goto load_check; } else if (ip[-1] < MP_BC_STORE_FAST_MULTI + 16) { fastn[MP_BC_STORE_FAST_MULTI - (mp_int_t)ip[-1]] = POP(); DISPATCH(); } else if (ip[-1] < MP_BC_UNARY_OP_MULTI + MP_UNARY_OP_NUM_BYTECODE) { SET_TOP(mp_unary_op(ip[-1] - MP_BC_UNARY_OP_MULTI, TOP())); DISPATCH(); } else if (ip[-1] < MP_BC_BINARY_OP_MULTI + MP_BINARY_OP_NUM_BYTECODE) { mp_obj_t rhs = POP(); mp_obj_t lhs = TOP(); SET_TOP(mp_binary_op(ip[-1] - MP_BC_BINARY_OP_MULTI, lhs, rhs)); DISPATCH(); } else #endif { mp_obj_t obj = mp_obj_new_exception_msg(&mp_type_NotImplementedError, translate("byte code not implemented")); nlr_pop(); code_state->state[0] = obj; return MP_VM_RETURN_EXCEPTION; } #if !MICROPY_OPT_COMPUTED_GOTO } // switch #endif pending_exception_check: MICROPY_VM_HOOK_LOOP #if MICROPY_ENABLE_SCHEDULER // This is an inlined variant of mp_handle_pending if (MP_STATE_VM(sched_state) == MP_SCHED_PENDING) { MARK_EXC_IP_SELECTIVE(); mp_uint_t atomic_state = MICROPY_BEGIN_ATOMIC_SECTION(); mp_obj_t obj = MP_STATE_VM(mp_pending_exception); if (obj != MP_OBJ_NULL) { MP_STATE_VM(mp_pending_exception) = MP_OBJ_NULL; if (!mp_sched_num_pending()) { MP_STATE_VM(sched_state) = MP_SCHED_IDLE; } MICROPY_END_ATOMIC_SECTION(atomic_state); RAISE(obj); } mp_handle_pending_tail(atomic_state); } #else // This is an inlined variant of mp_handle_pending if (MP_STATE_VM(mp_pending_exception) != MP_OBJ_NULL) { MARK_EXC_IP_SELECTIVE(); mp_obj_t obj = MP_STATE_VM(mp_pending_exception); MP_STATE_VM(mp_pending_exception) = MP_OBJ_NULL; RAISE(obj); } #endif #if MICROPY_PY_THREAD_GIL #if MICROPY_PY_THREAD_GIL_VM_DIVISOR if (--gil_divisor == 0) #endif { #if MICROPY_PY_THREAD_GIL_VM_DIVISOR gil_divisor = MICROPY_PY_THREAD_GIL_VM_DIVISOR; #endif #if MICROPY_ENABLE_SCHEDULER // can only switch threads if the scheduler is unlocked if (MP_STATE_VM(sched_state) == MP_SCHED_IDLE) #endif { MP_THREAD_GIL_EXIT(); MP_THREAD_GIL_ENTER(); } } #endif } // for loop } else { exception_handler: // exception occurred #if MICROPY_PY_SYS_EXC_INFO MP_STATE_VM(cur_exception) = nlr.ret_val; #endif #if SELECTIVE_EXC_IP // with selective ip, we store the ip 1 byte past the opcode, so move ptr back code_state->ip -= 1; #endif if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t *)nlr.ret_val)->type), MP_OBJ_FROM_PTR(&mp_type_StopIteration))) { if (code_state->ip) { // check if it's a StopIteration within a for block if (*code_state->ip == MP_BC_FOR_ITER) { const byte *ip = code_state->ip + 1; DECODE_ULABEL; // the jump offset if iteration finishes; for labels are always forward code_state->ip = ip + ulab; // jump to after for-block code_state->sp -= MP_OBJ_ITER_BUF_NSLOTS; // pop the exhausted iterator goto outer_dispatch_loop; // continue with dispatch loop } else if (*code_state->ip == MP_BC_YIELD_FROM) { // StopIteration inside yield from call means return a value of // yield from, so inject exception's value as yield from's result // (Instead of stack pop then push we just replace exhausted gen with value) *code_state->sp = mp_obj_exception_get_value(MP_OBJ_FROM_PTR(nlr.ret_val)); code_state->ip++; // yield from is over, move to next instruction goto outer_dispatch_loop; // continue with dispatch loop } } } #if MICROPY_STACKLESS unwind_loop: #endif // set file and line number that the exception occurred at // TODO: don't set traceback for exceptions re-raised by END_FINALLY. // But consider how to handle nested exceptions. if (nlr.ret_val != &mp_const_GeneratorExit_obj) { const byte *ip = code_state->fun_bc->bytecode; ip = mp_decode_uint_skip(ip); // skip n_state ip = mp_decode_uint_skip(ip); // skip n_exc_stack ip++; // skip scope_params ip++; // skip n_pos_args ip++; // skip n_kwonly_args ip++; // skip n_def_pos_args size_t bc = code_state->ip - ip; size_t code_info_size = mp_decode_uint_value(ip); ip = mp_decode_uint_skip(ip); // skip code_info_size bc -= code_info_size; #if MICROPY_PERSISTENT_CODE qstr block_name = ip[0] | (ip[1] << 8); qstr source_file = ip[2] | (ip[3] << 8); ip += 4; #else qstr block_name = mp_decode_uint_value(ip); ip = mp_decode_uint_skip(ip); qstr source_file = mp_decode_uint_value(ip); ip = mp_decode_uint_skip(ip); #endif size_t source_line = 1; size_t c; while ((c = *ip)) { size_t b, l; if ((c & 0x80) == 0) { // 0b0LLBBBBB encoding b = c & 0x1f; l = c >> 5; ip += 1; } else { // 0b1LLLBBBB 0bLLLLLLLL encoding (l's LSB in second byte) b = c & 0xf; l = ((c << 4) & 0x700) | ip[1]; ip += 2; } if (bc >= b) { bc -= b; source_line += l; } else { // found source line corresponding to bytecode offset break; } } mp_obj_exception_add_traceback(MP_OBJ_FROM_PTR(nlr.ret_val), source_file, source_line, block_name); } while (currently_in_except_block) { // nested exception assert(exc_sp >= exc_stack); // TODO make a proper message for nested exception // at the moment we are just raising the very last exception (the one that caused the nested exception) // move up to previous exception handler POP_EXC_BLOCK(); } if (exc_sp >= exc_stack) { // set flag to indicate that we are now handling an exception currently_in_except_block = 1; // catch exception and pass to byte code code_state->ip = exc_sp->handler; mp_obj_t *sp = MP_TAGPTR_PTR(exc_sp->val_sp); // save this exception in the stack so it can be used in a reraise, if needed exc_sp->prev_exc = nlr.ret_val; // push exception object so it can be handled by bytecode PUSH(MP_OBJ_FROM_PTR(nlr.ret_val)); code_state->sp = sp; #if MICROPY_STACKLESS } else if (code_state->prev != NULL) { mp_globals_set(code_state->old_globals); mp_code_state_t *new_code_state = code_state->prev; #if MICROPY_ENABLE_PYSTACK // Free code_state, and args allocated by mp_call_prepare_args_n_kw_var // (The latter is implicitly freed when using pystack due to its LIFO nature.) // The sizeof in the following statement does not include the size of the variable // part of the struct. This arg is anyway not used if pystack is enabled. mp_nonlocal_free(code_state, sizeof(mp_code_state_t)); #endif code_state = new_code_state; size_t n_state = mp_decode_uint_value(code_state->fun_bc->bytecode); fastn = &code_state->state[n_state - 1]; exc_stack = (mp_exc_stack_t *)(code_state->state + n_state); // variables that are visible to the exception handler (declared volatile) currently_in_except_block = MP_TAGPTR_TAG0(code_state->exc_sp); // 0 or 1, to detect nested exceptions exc_sp = MP_TAGPTR_PTR(code_state->exc_sp); // stack grows up, exc_sp points to top of stack goto unwind_loop; #endif } else { // propagate exception to higher level // Note: ip and sp don't have usable values at this point code_state->state[0] = MP_OBJ_FROM_PTR(nlr.ret_val); // put exception here because sp is invalid return MP_VM_RETURN_EXCEPTION; } } } }