/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * Copyright (c) 2015 Daniel Campora * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/mpconfig.h" #include "py/obj.h" #include "py/runtime.h" #include "py/mperrno.h" #include "inc/hw_types.h" #include "inc/hw_ints.h" #include "inc/hw_memmap.h" #include "rom_map.h" #include "prcm.h" #include "pybrtc.h" #include "mpirq.h" #include "pybsleep.h" #include "timeutils.h" #include "simplelink.h" #include "modnetwork.h" #include "modwlan.h" #include "mpexception.h" /// \moduleref pyb /// \class RTC - real time clock /****************************************************************************** DECLARE PRIVATE DATA ******************************************************************************/ STATIC const mp_irq_methods_t pyb_rtc_irq_methods; STATIC pyb_rtc_obj_t pyb_rtc_obj; /****************************************************************************** FUNCTION-LIKE MACROS ******************************************************************************/ #define RTC_U16MS_CYCLES(msec) ((msec * 1024) / 1000) #define RTC_CYCLES_U16MS(cycles) ((cycles * 1000) / 1024) /****************************************************************************** DECLARE PRIVATE FUNCTIONS ******************************************************************************/ STATIC void pyb_rtc_set_time (uint32_t secs, uint16_t msecs); STATIC uint32_t pyb_rtc_reset (void); STATIC void pyb_rtc_disable_interupt (void); STATIC void pyb_rtc_irq_enable (mp_obj_t self_in); STATIC void pyb_rtc_irq_disable (mp_obj_t self_in); STATIC int pyb_rtc_irq_flags (mp_obj_t self_in); STATIC uint pyb_rtc_datetime_s_us(const mp_obj_t datetime, uint32_t *seconds); STATIC mp_obj_t pyb_rtc_datetime(mp_obj_t self, const mp_obj_t datetime); STATIC void pyb_rtc_set_alarm (pyb_rtc_obj_t *self, uint32_t seconds, uint16_t mseconds); STATIC void rtc_msec_add(uint16_t msecs_1, uint32_t *secs, uint16_t *msecs_2); /****************************************************************************** DECLARE PUBLIC FUNCTIONS ******************************************************************************/ __attribute__ ((section (".boot"))) void pyb_rtc_pre_init(void) { // only if comming out of a power-on reset if (MAP_PRCMSysResetCauseGet() == PRCM_POWER_ON) { // Mark the RTC in use first MAP_PRCMRTCInUseSet(); // reset the time and date pyb_rtc_reset(); } } void pyb_rtc_get_time (uint32_t *secs, uint16_t *msecs) { uint16_t cycles; MAP_PRCMRTCGet (secs, &cycles); *msecs = RTC_CYCLES_U16MS(cycles); } uint32_t pyb_rtc_get_seconds (void) { uint32_t seconds; uint16_t mseconds; pyb_rtc_get_time(&seconds, &mseconds); return seconds; } void pyb_rtc_calc_future_time (uint32_t a_mseconds, uint32_t *f_seconds, uint16_t *f_mseconds) { uint32_t c_seconds; uint16_t c_mseconds; // get the current time pyb_rtc_get_time(&c_seconds, &c_mseconds); // calculate the future seconds *f_seconds = c_seconds + (a_mseconds / 1000); // calculate the "remaining" future mseconds *f_mseconds = a_mseconds % 1000; // add the current milliseconds rtc_msec_add (c_mseconds, f_seconds, f_mseconds); } void pyb_rtc_repeat_alarm (pyb_rtc_obj_t *self) { if (self->repeat) { uint32_t f_seconds, c_seconds; uint16_t f_mseconds, c_mseconds; pyb_rtc_get_time(&c_seconds, &c_mseconds); // substract the time elapsed between waking up and setting up the alarm again int32_t wake_ms = ((c_seconds * 1000) + c_mseconds) - ((self->alarm_time_s * 1000) + self->alarm_time_ms); int32_t next_alarm = self->alarm_ms - wake_ms; next_alarm = next_alarm > 0 ? next_alarm : PYB_RTC_MIN_ALARM_TIME_MS; pyb_rtc_calc_future_time (next_alarm, &f_seconds, &f_mseconds); // now configure the alarm pyb_rtc_set_alarm (self, f_seconds, f_mseconds); } } void pyb_rtc_disable_alarm (void) { pyb_rtc_obj.alarmset = false; pyb_rtc_disable_interupt(); } /****************************************************************************** DECLARE PRIVATE FUNCTIONS ******************************************************************************/ STATIC void pyb_rtc_set_time (uint32_t secs, uint16_t msecs) { // add the RTC access time rtc_msec_add(RTC_ACCESS_TIME_MSEC, &secs, &msecs); // convert from mseconds to cycles msecs = RTC_U16MS_CYCLES(msecs); // now set the time MAP_PRCMRTCSet(secs, msecs); } STATIC uint32_t pyb_rtc_reset (void) { // fresh reset; configure the RTC Calendar // set the date to 1st Jan 2015 // set the time to 00:00:00 uint32_t seconds = timeutils_seconds_since_2000(2015, 1, 1, 0, 0, 0); // disable any running alarm pyb_rtc_disable_alarm(); // Now set the RTC calendar time pyb_rtc_set_time(seconds, 0); return seconds; } STATIC void pyb_rtc_disable_interupt (void) { uint primsk = disable_irq(); MAP_PRCMIntDisable(PRCM_INT_SLOW_CLK_CTR); (void)MAP_PRCMIntStatus(); enable_irq(primsk); } STATIC void pyb_rtc_irq_enable (mp_obj_t self_in) { pyb_rtc_obj_t *self = self_in; // we always need interrupts if repeat is enabled if ((self->pwrmode & PYB_PWR_MODE_ACTIVE) || self->repeat) { MAP_PRCMIntEnable(PRCM_INT_SLOW_CLK_CTR); } else { // just in case it was already enabled before MAP_PRCMIntDisable(PRCM_INT_SLOW_CLK_CTR); } self->irq_enabled = true; } STATIC void pyb_rtc_irq_disable (mp_obj_t self_in) { pyb_rtc_obj_t *self = self_in; self->irq_enabled = false; if (!self->repeat) { // we always need interrupts if repeat is enabled pyb_rtc_disable_interupt(); } } STATIC int pyb_rtc_irq_flags (mp_obj_t self_in) { pyb_rtc_obj_t *self = self_in; return self->irq_flags; } STATIC uint pyb_rtc_datetime_s_us(const mp_obj_t datetime, uint32_t *seconds) { timeutils_struct_time_t tm; uint32_t useconds; // set date and time mp_obj_t *items; uint len; mp_obj_get_array(datetime, &len, &items); // verify the tuple if (len < 3 || len > 8) { mp_raise_ValueError(mpexception_value_invalid_arguments); } tm.tm_year = mp_obj_get_int(items[0]); tm.tm_mon = mp_obj_get_int(items[1]); tm.tm_mday = mp_obj_get_int(items[2]); if (len < 7) { useconds = 0; } else { useconds = mp_obj_get_int(items[6]); } if (len < 6) { tm.tm_sec = 0; } else { tm.tm_sec = mp_obj_get_int(items[5]); } if (len < 5) { tm.tm_min = 0; } else { tm.tm_min = mp_obj_get_int(items[4]); } if (len < 4) { tm.tm_hour = 0; } else { tm.tm_hour = mp_obj_get_int(items[3]); } *seconds = timeutils_seconds_since_2000(tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec); return useconds; } /// The 8-tuple has the same format as CPython's datetime object: /// /// (year, month, day, hours, minutes, seconds, milliseconds, tzinfo=None) /// STATIC mp_obj_t pyb_rtc_datetime(mp_obj_t self_in, const mp_obj_t datetime) { uint32_t seconds; uint32_t useconds; if (datetime != MP_OBJ_NULL) { useconds = pyb_rtc_datetime_s_us(datetime, &seconds); pyb_rtc_set_time (seconds, useconds / 1000); } else { seconds = pyb_rtc_reset(); } // set WLAN time and date, this is needed to verify certificates wlan_set_current_time(seconds); return mp_const_none; } STATIC void pyb_rtc_set_alarm (pyb_rtc_obj_t *self, uint32_t seconds, uint16_t mseconds) { // disable the interrupt before updating anything if (self->irq_enabled) { MAP_PRCMIntDisable(PRCM_INT_SLOW_CLK_CTR); } // set the match value MAP_PRCMRTCMatchSet(seconds, RTC_U16MS_CYCLES(mseconds)); self->alarmset = true; self->alarm_time_s = seconds; self->alarm_time_ms = mseconds; // enabled the interrupts again if applicable if (self->irq_enabled || self->repeat) { MAP_PRCMIntEnable(PRCM_INT_SLOW_CLK_CTR); } } STATIC void rtc_msec_add (uint16_t msecs_1, uint32_t *secs, uint16_t *msecs_2) { if (msecs_1 + *msecs_2 >= 1000) { // larger than one second *msecs_2 = (msecs_1 + *msecs_2) - 1000; *secs += 1; // carry flag } else { // simply add the mseconds *msecs_2 = msecs_1 + *msecs_2; } } /******************************************************************************/ // Micro Python bindings STATIC const mp_arg_t pyb_rtc_init_args[] = { { MP_QSTR_id, MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_datetime, MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} }, }; STATIC mp_obj_t pyb_rtc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) { // parse args mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args); mp_arg_val_t args[MP_ARRAY_SIZE(pyb_rtc_init_args)]; mp_arg_parse_all(n_args, all_args, &kw_args, MP_ARRAY_SIZE(args), pyb_rtc_init_args, args); // check the peripheral id if (args[0].u_int != 0) { mp_raise_OSError(MP_ENODEV); } // setup the object pyb_rtc_obj_t *self = &pyb_rtc_obj; self->base.type = &pyb_rtc_type; // set the time and date pyb_rtc_datetime((mp_obj_t)&pyb_rtc_obj, args[1].u_obj); // pass it to the sleep module pyb_sleep_set_rtc_obj (self); // return constant object return (mp_obj_t)&pyb_rtc_obj; } STATIC mp_obj_t pyb_rtc_init (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { // parse args mp_arg_val_t args[MP_ARRAY_SIZE(pyb_rtc_init_args) - 1]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(args), &pyb_rtc_init_args[1], args); return pyb_rtc_datetime(pos_args[0], args[0].u_obj); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_init_obj, 1, pyb_rtc_init); STATIC mp_obj_t pyb_rtc_now (mp_obj_t self_in) { timeutils_struct_time_t tm; uint32_t seconds; uint16_t mseconds; // get the time from the RTC pyb_rtc_get_time(&seconds, &mseconds); timeutils_seconds_since_2000_to_struct_time(seconds, &tm); mp_obj_t tuple[8] = { mp_obj_new_int(tm.tm_year), mp_obj_new_int(tm.tm_mon), mp_obj_new_int(tm.tm_mday), mp_obj_new_int(tm.tm_hour), mp_obj_new_int(tm.tm_min), mp_obj_new_int(tm.tm_sec), mp_obj_new_int(mseconds * 1000), mp_const_none }; return mp_obj_new_tuple(8, tuple); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_rtc_now_obj, pyb_rtc_now); STATIC mp_obj_t pyb_rtc_deinit (mp_obj_t self_in) { pyb_rtc_reset(); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_rtc_deinit_obj, pyb_rtc_deinit); STATIC mp_obj_t pyb_rtc_alarm (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { STATIC const mp_arg_t allowed_args[] = { { MP_QSTR_id, MP_ARG_INT, {.u_int = 0} }, { MP_QSTR_time, MP_ARG_OBJ, {.u_obj = mp_const_none} }, { MP_QSTR_repeat, MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} }, }; // parse args pyb_rtc_obj_t *self = pos_args[0]; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(args), allowed_args, args); // check the alarm id if (args[0].u_int != 0) { mp_raise_OSError(MP_ENODEV); } uint32_t f_seconds; uint16_t f_mseconds; bool repeat = args[2].u_bool; if (MP_OBJ_IS_TYPE(args[1].u_obj, &mp_type_tuple)) { // datetime tuple given // repeat cannot be used with a datetime tuple if (repeat) { mp_raise_ValueError(mpexception_value_invalid_arguments); } f_mseconds = pyb_rtc_datetime_s_us (args[1].u_obj, &f_seconds) / 1000; } else { // then it must be an integer self->alarm_ms = mp_obj_get_int(args[1].u_obj); pyb_rtc_calc_future_time (self->alarm_ms, &f_seconds, &f_mseconds); } // store the repepat flag self->repeat = repeat; // now configure the alarm pyb_rtc_set_alarm (self, f_seconds, f_mseconds); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_alarm_obj, 1, pyb_rtc_alarm); STATIC mp_obj_t pyb_rtc_alarm_left (mp_uint_t n_args, const mp_obj_t *args) { pyb_rtc_obj_t *self = args[0]; int32_t ms_left; uint32_t c_seconds; uint16_t c_mseconds; // only alarm id 0 is available if (n_args > 1 && mp_obj_get_int(args[1]) != 0) { mp_raise_OSError(MP_ENODEV); } // get the current time pyb_rtc_get_time(&c_seconds, &c_mseconds); // calculate the ms left ms_left = ((self->alarm_time_s * 1000) + self->alarm_time_ms) - ((c_seconds * 1000) + c_mseconds); if (!self->alarmset || ms_left < 0) { ms_left = 0; } return mp_obj_new_int(ms_left); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_alarm_left_obj, 1, 2, pyb_rtc_alarm_left); STATIC mp_obj_t pyb_rtc_alarm_cancel (mp_uint_t n_args, const mp_obj_t *args) { // only alarm id 0 is available if (n_args > 1 && mp_obj_get_int(args[1]) != 0) { mp_raise_OSError(MP_ENODEV); } // disable the alarm pyb_rtc_disable_alarm(); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_rtc_alarm_cancel_obj, 1, 2, pyb_rtc_alarm_cancel); /// \method irq(trigger, priority, handler, wake) STATIC mp_obj_t pyb_rtc_irq (mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { mp_arg_val_t args[mp_irq_INIT_NUM_ARGS]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, mp_irq_INIT_NUM_ARGS, mp_irq_init_args, args); pyb_rtc_obj_t *self = pos_args[0]; // save the power mode data for later uint8_t pwrmode = (args[3].u_obj == mp_const_none) ? PYB_PWR_MODE_ACTIVE : mp_obj_get_int(args[3].u_obj); if (pwrmode > (PYB_PWR_MODE_ACTIVE | PYB_PWR_MODE_LPDS | PYB_PWR_MODE_HIBERNATE)) { goto invalid_args; } // check the trigger if (mp_obj_get_int(args[0].u_obj) == PYB_RTC_ALARM0) { self->pwrmode = pwrmode; pyb_rtc_irq_enable((mp_obj_t)self); } else { goto invalid_args; } // the interrupt priority is ignored since it's already set to to highest level by the sleep module // to make sure that the wakeup irqs are always called first when resuming from sleep // create the callback mp_obj_t _irq = mp_irq_new ((mp_obj_t)self, args[2].u_obj, &pyb_rtc_irq_methods); self->irq_obj = _irq; return _irq; invalid_args: mp_raise_ValueError(mpexception_value_invalid_arguments); } STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_rtc_irq_obj, 1, pyb_rtc_irq); STATIC const mp_map_elem_t pyb_rtc_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_rtc_init_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_rtc_deinit_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_now), (mp_obj_t)&pyb_rtc_now_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_alarm), (mp_obj_t)&pyb_rtc_alarm_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_alarm_left), (mp_obj_t)&pyb_rtc_alarm_left_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_alarm_cancel), (mp_obj_t)&pyb_rtc_alarm_cancel_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_irq), (mp_obj_t)&pyb_rtc_irq_obj }, // class constants { MP_OBJ_NEW_QSTR(MP_QSTR_ALARM0), MP_OBJ_NEW_SMALL_INT(PYB_RTC_ALARM0) }, }; STATIC MP_DEFINE_CONST_DICT(pyb_rtc_locals_dict, pyb_rtc_locals_dict_table); const mp_obj_type_t pyb_rtc_type = { { &mp_type_type }, .name = MP_QSTR_RTC, .make_new = pyb_rtc_make_new, .locals_dict = (mp_obj_t)&pyb_rtc_locals_dict, }; STATIC const mp_irq_methods_t pyb_rtc_irq_methods = { .init = pyb_rtc_irq, .enable = pyb_rtc_irq_enable, .disable = pyb_rtc_irq_disable, .flags = pyb_rtc_irq_flags };