/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2020 Lucian Copeland for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "common-hal/analogio/AnalogIn.h" #include "py/mperrno.h" #include "py/runtime.h" #include "supervisor/shared/translate.h" #include "components/driver/include/driver/adc_common.h" #include "components/esp_adc_cal/include/esp_adc_cal.h" #include "shared-bindings/microcontroller/Pin.h" #define DEFAULT_VREF 1100 #define NO_OF_SAMPLES 64 #define ATTENUATION ADC_ATTEN_DB_11 #define DATA_WIDTH ADC_WIDTH_BIT_13 void common_hal_analogio_analogin_construct(analogio_analogin_obj_t* self, const mcu_pin_obj_t *pin) { if (pin->adc_index == 0 || pin->adc_channel == ADC_CHANNEL_MAX) { mp_raise_ValueError(translate("Pin does not have ADC capabilities")); } common_hal_mcu_pin_claim(pin); self->pin = pin; } bool common_hal_analogio_analogin_deinited(analogio_analogin_obj_t *self) { return self->pin == NULL; } void common_hal_analogio_analogin_deinit(analogio_analogin_obj_t *self) { if (common_hal_analogio_analogin_deinited(self)) { return; } reset_pin_number(self->pin->number); self->pin = NULL; } uint16_t common_hal_analogio_analogin_get_value(analogio_analogin_obj_t *self) { if (self->pin->adc_index == ADC_UNIT_1) { adc1_config_width(DATA_WIDTH); adc1_config_channel_atten((adc1_channel_t)self->pin->adc_channel, ATTENUATION); } else if (self->pin->adc_index == ADC_UNIT_2) { adc2_config_channel_atten((adc2_channel_t)self->pin->adc_channel, ATTENUATION); } // Automatically select calibration process depending on status of efuse esp_adc_cal_characteristics_t *adc_chars = calloc(1, sizeof(esp_adc_cal_characteristics_t)); esp_adc_cal_characterize(self->pin->adc_index, ATTENUATION, DATA_WIDTH, DEFAULT_VREF, adc_chars); uint32_t adc_reading = 0; //Multisampling for (int i = 0; i < NO_OF_SAMPLES; i++) { if (self->pin->adc_index == ADC_UNIT_1) { adc_reading += adc1_get_raw((adc1_channel_t)self->pin->adc_channel); } else { int raw; esp_err_t r = adc2_get_raw((adc2_channel_t)self->pin->adc_channel, DATA_WIDTH, &raw); if ( r != ESP_OK ) { mp_raise_ValueError(translate("ADC2 is being used by WiFi")); } adc_reading += raw; } } adc_reading /= NO_OF_SAMPLES; // This corrects non-linear regions of the ADC range with a LUT, so it's a better reading than raw uint32_t voltage = esp_adc_cal_raw_to_voltage(adc_reading, adc_chars); return voltage * ((1 << 16) - 1)/3300; } float common_hal_analogio_analogin_get_reference_voltage(analogio_analogin_obj_t *self) { return 3.3f; }