/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/microcontroller/__init__.h" #include "shared-bindings/busio/UART.h" #include "mpconfigport.h" #include "py/gc.h" #include "py/mperrno.h" #include "py/runtime.h" #include "py/stream.h" #include "supervisor/shared/translate.h" #include "tick.h" #include "nrfx_uart.h" #include static nrfx_uart_t _uart = NRFX_UART_INSTANCE(0); // expression to examine, and return value in case of failing #define _VERIFY_ERR(_exp) \ do {\ uint32_t _err = (_exp);\ if (NRFX_SUCCESS != _err ) {\ mp_raise_msg_varg(&mp_type_AssertionError, translate("error = 0x%08lX "), _err);\ }\ }while(0) static uint32_t get_nrf_baud (uint32_t baudrate); static void uart_callback_irq (const nrfx_uart_event_t * event, void * context) { busio_uart_obj_t* self = (busio_uart_obj_t*) context; switch ( event->type ) { case NRFX_UART_EVT_TX_DONE: self->xferred_bytes = event->data.rxtx.bytes; break; case NRFX_UART_EVT_RX_DONE: self->rx_count += event->data.rxtx.bytes; self->receiving = false; break; default: break; } } void common_hal_busio_uart_construct (busio_uart_obj_t *self, const mcu_pin_obj_t * tx, const mcu_pin_obj_t * rx, uint32_t baudrate, uint8_t bits, uart_parity_t parity, uint8_t stop, uint32_t timeout, uint8_t receiver_buffer_size) { #ifndef NRF52840_XXAA mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); #else if ( (tx == mp_const_none) || (rx == mp_const_none) ) { mp_raise_ValueError(translate("Invalid pins")); } if ( receiver_buffer_size == 0 ) { mp_raise_ValueError(translate("Invalid buffer size")); } if ( parity == PARITY_ODD ) { mp_raise_ValueError(translate("busio.UART odd parity is not supported")); } nrfx_uart_config_t config = { .pseltxd = tx->number, .pselrxd = rx->number, .pselcts = NRF_UART_PSEL_DISCONNECTED, .pselrts = NRF_UART_PSEL_DISCONNECTED, .p_context = self, .hwfc = NRF_UART_HWFC_DISABLED, .parity = (parity == PARITY_NONE) ? NRF_UART_PARITY_EXCLUDED : NRF_UART_PARITY_INCLUDED, .baudrate = get_nrf_baud(baudrate), .interrupt_priority = 7 }; nrfx_uart_uninit(&_uart); _VERIFY_ERR(nrfx_uart_init(&_uart, &config, uart_callback_irq)); // Init buffer for rx self->buffer = (uint8_t *) gc_alloc(receiver_buffer_size, false, false); if ( !self->buffer ) { nrfx_uart_uninit(&_uart); mp_raise_msg(&mp_type_MemoryError, translate("Failed to allocate RX buffer")); } self->bufsize = receiver_buffer_size; self->baudrate = baudrate; self->timeout_ms = timeout; nrfx_uart_rx_enable(&_uart); self->receiving = true; _VERIFY_ERR(nrfx_uart_rx(&_uart, self->buffer, self->bufsize)); #endif } bool common_hal_busio_uart_deinited(busio_uart_obj_t *self) { #ifndef NRF52840_XXAA mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); #else return (nrf_uart_rx_pin_get(_uart.p_reg) == NRF_UART_PSEL_DISCONNECTED) || (nrf_uart_tx_pin_get(_uart.p_reg) == NRF_UART_PSEL_DISCONNECTED); #endif } void common_hal_busio_uart_deinit(busio_uart_obj_t *self) { #ifndef NRF52840_XXAA mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); #else if ( !common_hal_busio_uart_deinited(self) ) { nrfx_uart_uninit(&_uart); // gc_free(self->buffer); } #endif } static size_t get_rx_data (busio_uart_obj_t *self, uint8_t *data, size_t len) { // up to max received const size_t cnt = MIN(self->rx_count, len); memcpy(data, self->buffer, cnt); self->rx_count -= cnt; // shift buffer if we didn't consume it all if ( self->rx_count ) { memmove(self->buffer, self->buffer + cnt, self->rx_count); } return cnt; } // Read characters. size_t common_hal_busio_uart_read(busio_uart_obj_t *self, uint8_t *data, size_t len, int *errcode) { #ifndef NRF52840_XXAA mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); return 0; #else size_t remain = len; uint64_t start_ticks = ticks_ms; // nrfx_uart doesn't provide API to check number of bytes received so far for the on going reception. // we have to abort the current transfer to get rx_count updated !!! if ( self->receiving ) { nrfx_uart_rx_abort(&_uart); while ( self->receiving ) { } } size_t cnt = get_rx_data(self, data, remain); data += cnt; remain -= cnt; if ( self->timeout_ms ) { do { if ( remain == 0 ) { break; } // no data, no transfer, start with only 1 byte each so that we could know when data is available if ( !self->rx_count && !self->receiving ) { self->receiving = true; _VERIFY_ERR(nrfx_uart_rx(&_uart, self->buffer, 1)); } if ( self->rx_count ) { *data++ = self->buffer[0]; remain--; self->rx_count--; } #ifdef MICROPY_VM_HOOK_LOOP MICROPY_VM_HOOK_LOOP #endif } while ( ticks_ms - start_ticks < self->timeout_ms ); } // abort oon-going 1 byte transfer if ( self->receiving ) { nrfx_uart_rx_abort(&_uart); while ( self->receiving ) { } } // queue full buffer transfer self->receiving = true; _VERIFY_ERR(nrfx_uart_rx(&_uart, self->buffer + self->rx_count, self->bufsize - self->rx_count)); return len - remain; #endif } // Write characters. size_t common_hal_busio_uart_write(busio_uart_obj_t *self, const uint8_t *data, size_t len, int *errcode) { #ifndef NRF52840_XXAA mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); return 0; #else self->xferred_bytes = 0; (*errcode) = nrfx_uart_tx(&_uart, data, len); _VERIFY_ERR(*errcode); (*errcode) = 0; uint64_t start_ticks = ticks_ms; while ( (0 == self->xferred_bytes) && (ticks_ms - start_ticks < self->timeout_ms) ) { #ifdef MICROPY_VM_HOOK_LOOP MICROPY_VM_HOOK_LOOP #endif // break if zero timeout if ( self->timeout_ms == 0 ) { break; } } if ( self->xferred_bytes <= 0 ) { mp_raise_msg_varg(&mp_type_AssertionError, translate("failed")); *errcode = MP_EAGAIN; return MP_STREAM_ERROR; } return len; #endif } uint32_t common_hal_busio_uart_get_baudrate(busio_uart_obj_t *self) { #ifndef NRF52840_XXAA mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); #endif return self->baudrate; } void common_hal_busio_uart_set_baudrate(busio_uart_obj_t *self, uint32_t baudrate) { #ifndef NRF52840_XXAA mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); #else self->baudrate = baudrate; nrf_uart_baudrate_set(_uart.p_reg, get_nrf_baud(baudrate)); #endif } uint32_t common_hal_busio_uart_rx_characters_available(busio_uart_obj_t *self) { #ifndef NRF52840_XXAA mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); #else return self->rx_count + (nrfx_uart_rx_ready(&_uart) ? 1 : 0); #endif } bool common_hal_busio_uart_ready_to_tx(busio_uart_obj_t *self) { #ifndef NRF52840_XXAA mp_raise_NotImplementedError(translate("busio.UART not yet implemented")); return false; #else return !nrfx_uart_tx_in_progress(&_uart); #endif } static uint32_t get_nrf_baud (uint32_t baudrate) { if ( baudrate <= 1200 ) { return NRF_UART_BAUDRATE_1200; } else if ( baudrate <= 2400 ) { return NRF_UART_BAUDRATE_2400; } else if ( baudrate <= 4800 ) { return NRF_UART_BAUDRATE_4800; } else if ( baudrate <= 9600 ) { return NRF_UART_BAUDRATE_9600; } else if ( baudrate <= 14400 ) { return NRF_UART_BAUDRATE_14400; } else if ( baudrate <= 19200 ) { return NRF_UART_BAUDRATE_19200; } else if ( baudrate <= 28800 ) { return NRF_UART_BAUDRATE_28800; } else if ( baudrate <= 38400 ) { return NRF_UART_BAUDRATE_38400; } else if ( baudrate <= 57600 ) { return NRF_UART_BAUDRATE_57600; } else if ( baudrate <= 76800 ) { return NRF_UART_BAUDRATE_76800; } else if ( baudrate <= 115200 ) { return NRF_UART_BAUDRATE_115200; } else if ( baudrate <= 230400 ) { return NRF_UART_BAUDRATE_230400; } else if ( baudrate <= 250000 ) { return NRF_UART_BAUDRATE_250000; } else if ( baudrate <= 460800 ) { return NRF_UART_BAUDRATE_460800; } else if ( baudrate <= 921600 ) { return NRF_UART_BAUDRATE_921600; } else { return NRF_UART_BAUDRATE_1000000; } }