// Copyright 2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "driver/i2s.h" #include "esp_system.h" #include "esp_log.h" #include "soc/i2s_struct.h" #include "soc/apb_ctrl_reg.h" #include "esp32s2/rom/lldesc.h" #include "esp32s2/rom/cache.h" #include "soc/dport_access.h" #include "soc/dport_reg.h" #include "driver/ledc.h" #include "cam.h" #include "hal/gpio_ll.h" static const char *TAG = "cam"; #define CAM_DMA_MAX_SIZE (4095) typedef enum { CAM_IN_SUC_EOF_EVENT = 0, CAM_VSYNC_EVENT } cam_event_t; typedef struct { uint8_t *frame_buffer; size_t len; } frame_buffer_event_t; typedef struct { uint32_t buffer_size; uint32_t half_buffer_size; uint32_t node_cnt; uint32_t half_node_cnt; uint32_t dma_size; uint32_t cnt; uint32_t total_cnt; uint16_t width; uint16_t high; lldesc_t *dma; uint8_t *buffer; uint8_t *frame1_buffer; uint8_t *frame2_buffer; uint8_t frame1_buffer_en; uint8_t frame2_buffer_en; uint8_t jpeg_mode; uint8_t vsync_pin; uint8_t vsync_invert; uint8_t hsync_invert; QueueHandle_t event_queue; QueueHandle_t frame_buffer_queue; TaskHandle_t task_handle; intr_handle_t intr_handle; } cam_obj_t; static cam_obj_t *cam_obj = NULL; void IRAM_ATTR cam_isr(void *arg) { cam_event_t cam_event = {0}; BaseType_t HPTaskAwoken = pdFALSE; typeof(I2S0.int_st) int_st = I2S0.int_st; I2S0.int_clr.val = int_st.val; if (int_st.in_suc_eof) { cam_event = CAM_IN_SUC_EOF_EVENT; xQueueSendFromISR(cam_obj->event_queue, (void *)&cam_event, &HPTaskAwoken); } if (HPTaskAwoken == pdTRUE) { portYIELD_FROM_ISR(); } } void IRAM_ATTR cam_vsync_isr(void *arg) { cam_event_t cam_event = {0}; BaseType_t HPTaskAwoken = pdFALSE; /*!< filter */ ets_delay_us(1); if (gpio_ll_get_level(&GPIO, cam_obj->vsync_pin) == !cam_obj->vsync_invert) { cam_event = CAM_VSYNC_EVENT; xQueueSendFromISR(cam_obj->event_queue, (void *)&cam_event, &HPTaskAwoken); } if (HPTaskAwoken == pdTRUE) { portYIELD_FROM_ISR(); } } static void cam_config(const cam_config_t *config) { /*!bit_width; /*!< Configuration data format */ I2S0.conf.val = 0; I2S0.conf.tx_right_first = 1; I2S0.conf.tx_msb_right = 1; I2S0.conf.tx_dma_equal = 1; I2S0.conf.rx_right_first = 1; I2S0.conf.rx_msb_right = 1; I2S0.conf.rx_dma_equal = 1; I2S0.conf1.val = 0; I2S0.conf1.tx_pcm_bypass = 1; I2S0.conf1.tx_stop_en = 1; I2S0.conf1.rx_pcm_bypass = 1; I2S0.conf2.val = 0; I2S0.conf2.cam_sync_fifo_reset = 1; I2S0.conf2.cam_sync_fifo_reset = 0; I2S0.conf2.lcd_en = 1; I2S0.conf2.camera_en = 1; I2S0.conf2.i_v_sync_filter_en = 1; I2S0.conf2.i_v_sync_filter_thres = 1; I2S0.conf_chan.val = 0; I2S0.conf_chan.tx_chan_mod = 1; I2S0.conf_chan.rx_chan_mod = 1; I2S0.fifo_conf.val = 0; I2S0.fifo_conf.rx_fifo_mod_force_en = 1; I2S0.fifo_conf.rx_data_num = 32; I2S0.fifo_conf.rx_fifo_mod = 2; I2S0.fifo_conf.tx_fifo_mod_force_en = 1; I2S0.fifo_conf.tx_data_num = 32; I2S0.fifo_conf.tx_fifo_mod = 2; I2S0.fifo_conf.dscr_en = 1; I2S0.lc_conf.out_rst = 1; I2S0.lc_conf.out_rst = 0; I2S0.lc_conf.in_rst = 1; I2S0.lc_conf.in_rst = 0; I2S0.timing.val = 0; I2S0.int_ena.val = 0; I2S0.int_clr.val = ~0; I2S0.lc_conf.check_owner = 0; I2S0.conf.rx_start = 1; } static void cam_set_pin(const cam_config_t *config) { gpio_config_t io_conf = {0}; io_conf.intr_type = config->vsync_invert ? GPIO_PIN_INTR_NEGEDGE : GPIO_PIN_INTR_POSEDGE; io_conf.pin_bit_mask = 1 << config->pin.vsync; io_conf.mode = GPIO_MODE_INPUT; io_conf.pull_up_en = 1; io_conf.pull_down_en = 0; gpio_config(&io_conf); gpio_install_isr_service(0); gpio_isr_handler_add(config->pin.vsync, cam_vsync_isr, NULL); gpio_intr_disable(config->pin.vsync); PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin.pclk], PIN_FUNC_GPIO); gpio_set_direction(config->pin.pclk, GPIO_MODE_INPUT); gpio_set_pull_mode(config->pin.pclk, GPIO_FLOATING); gpio_matrix_in(config->pin.pclk, I2S0I_WS_IN_IDX, false); PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin.vsync], PIN_FUNC_GPIO); gpio_set_direction(config->pin.vsync, GPIO_MODE_INPUT); gpio_set_pull_mode(config->pin.vsync, GPIO_FLOATING); gpio_matrix_in(config->pin.vsync, I2S0I_V_SYNC_IDX, config->vsync_invert); PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin.hsync], PIN_FUNC_GPIO); gpio_set_direction(config->pin.hsync, GPIO_MODE_INPUT); gpio_set_pull_mode(config->pin.hsync, GPIO_FLOATING); gpio_matrix_in(config->pin.hsync, I2S0I_H_SYNC_IDX, config->hsync_invert); for (int i = 0; i < config->bit_width; i++) { PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[config->pin_data[i]], PIN_FUNC_GPIO); gpio_set_direction(config->pin_data[i], GPIO_MODE_INPUT); gpio_set_pull_mode(config->pin_data[i], GPIO_FLOATING); /*!< High position alignment, IN16 is always the highest bit */ /*!< Fifo accesses data by bit, and when rx_bits_mod is 8, the data needs to be aligned by 8 bits */ gpio_matrix_in(config->pin_data[i], I2S0I_DATA_IN0_IDX + (16 - config->bit_width) + i, false); } ledc_timer_config_t ledc_timer = { .duty_resolution = LEDC_TIMER_1_BIT, .freq_hz = config->xclk_fre, .speed_mode = LEDC_LOW_SPEED_MODE, .timer_num = LEDC_TIMER_1 }; ledc_timer_config(&ledc_timer); ledc_channel_config_t ledc_channel = { .channel = LEDC_CHANNEL_2, .duty = 1, .gpio_num = config->pin.xclk, .speed_mode = LEDC_LOW_SPEED_MODE, .timer_sel = LEDC_TIMER_1, .hpoint = 0 }; ledc_channel_config(&ledc_channel); gpio_matrix_in(0x38, I2S0I_H_ENABLE_IDX, false); ESP_LOGI(TAG, "cam_xclk_pin setup\n"); } static void cam_vsync_intr_enable(uint8_t en) { if (en) { gpio_intr_enable(cam_obj->vsync_pin); } else { gpio_intr_disable(cam_obj->vsync_pin); } } static void cam_dma_stop(void) { if (I2S0.int_ena.in_suc_eof == 1) { I2S0.conf.rx_start = 0; I2S0.int_ena.in_suc_eof = 0; I2S0.int_clr.in_suc_eof = 1; I2S0.in_link.stop = 1; } } static void cam_dma_start(void) { if (I2S0.int_ena.in_suc_eof == 0) { I2S0.int_clr.in_suc_eof = 1; I2S0.int_ena.in_suc_eof = 1; I2S0.conf.rx_reset = 1; I2S0.conf.rx_reset = 0; I2S0.conf.rx_fifo_reset = 1; I2S0.conf.rx_fifo_reset = 0; I2S0.lc_conf.in_rst = 1; I2S0.lc_conf.in_rst = 0; I2S0.lc_conf.ahbm_fifo_rst = 1; I2S0.lc_conf.ahbm_fifo_rst = 0; I2S0.lc_conf.ahbm_rst = 1; I2S0.lc_conf.ahbm_rst = 0; I2S0.in_link.start = 1; I2S0.conf.rx_start = 1; if (cam_obj->jpeg_mode) { /*!< Manually give the vsync data for the first frame */ gpio_matrix_in(cam_obj->vsync_pin, I2S0I_V_SYNC_IDX, !cam_obj->vsync_invert); gpio_matrix_in(cam_obj->vsync_pin, I2S0I_V_SYNC_IDX, cam_obj->vsync_invert); } } } void cam_stop(void) { cam_vsync_intr_enable(0); cam_dma_stop(); } void cam_start(void) { cam_vsync_intr_enable(1); } typedef enum { CAM_STATE_IDLE = 0, CAM_STATE_READ_BUF1 = 1, CAM_STATE_READ_BUF2 = 2, } cam_state_t; /*!event_queue); while (1) { xQueueReceive(cam_obj->event_queue, (void *)&cam_event, portMAX_DELAY); switch (state) { case CAM_STATE_IDLE: { if (cam_event == CAM_VSYNC_EVENT) { if (cam_obj->frame1_buffer_en) { cam_dma_start(); cam_vsync_intr_enable(0); state = CAM_STATE_READ_BUF1; } else if (cam_obj->frame2_buffer_en) { cam_dma_start(); cam_vsync_intr_enable(0); state = CAM_STATE_READ_BUF2; } cam_obj->cnt = 0; } } break; case CAM_STATE_READ_BUF1: { if (cam_event == CAM_IN_SUC_EOF_EVENT) { if (cam_obj->cnt == 0) { cam_vsync_intr_enable(1); /*!< CAM real start is required to receive the first buf data and then turn on the vsync interrupt */ } memcpy(&cam_obj->frame1_buffer[cam_obj->cnt * cam_obj->half_buffer_size], &cam_obj->buffer[(cam_obj->cnt % 2) * cam_obj->half_buffer_size], cam_obj->half_buffer_size); if (cam_obj->jpeg_mode) { if (cam_obj->frame1_buffer_en == 0) { cam_dma_stop(); } } else { if (cam_obj->cnt == cam_obj->total_cnt - 1) { cam_obj->frame1_buffer_en = 0; } } if (cam_obj->frame1_buffer_en == 0) { frame_buffer_event.frame_buffer = cam_obj->frame1_buffer; frame_buffer_event.len = (cam_obj->cnt + 1) * cam_obj->half_buffer_size; xQueueSend(cam_obj->frame_buffer_queue, (void *)&frame_buffer_event, portMAX_DELAY); state = CAM_STATE_IDLE; } else { cam_obj->cnt++; } } else if (cam_event == CAM_VSYNC_EVENT) { if (cam_obj->jpeg_mode) { cam_obj->frame1_buffer_en = 0; } } } break; case CAM_STATE_READ_BUF2: { if (cam_event == CAM_IN_SUC_EOF_EVENT) { if (cam_obj->cnt == 0) { cam_vsync_intr_enable(1); /*!< CAM real start is required to receive the first buf data and then turn on the vsync interrupt */ } memcpy(&cam_obj->frame2_buffer[cam_obj->cnt * cam_obj->half_buffer_size], &cam_obj->buffer[(cam_obj->cnt % 2) * cam_obj->half_buffer_size], cam_obj->half_buffer_size); if (cam_obj->jpeg_mode) { if (cam_obj->frame2_buffer_en == 0) { cam_dma_stop(); } } else { if (cam_obj->cnt == cam_obj->total_cnt - 1) { cam_obj->frame2_buffer_en = 0; } } if (cam_obj->frame2_buffer_en == 0) { frame_buffer_event.frame_buffer = cam_obj->frame2_buffer; frame_buffer_event.len = (cam_obj->cnt + 1) * cam_obj->half_buffer_size; xQueueSend(cam_obj->frame_buffer_queue, (void *)&frame_buffer_event, portMAX_DELAY); state = CAM_STATE_IDLE; } else { cam_obj->cnt++; } } else if (cam_event == CAM_VSYNC_EVENT) { if (cam_obj->jpeg_mode) { cam_obj->frame2_buffer_en = 0; } } } break; } } } size_t cam_take(uint8_t **buffer_p) { frame_buffer_event_t frame_buffer_event; xQueueReceive(cam_obj->frame_buffer_queue, (void *)&frame_buffer_event, portMAX_DELAY); *buffer_p = frame_buffer_event.frame_buffer; return frame_buffer_event.len; } void cam_give(uint8_t *buffer) { if (buffer == cam_obj->frame1_buffer) { cam_obj->frame1_buffer_en = 1; } else if (buffer == cam_obj->frame2_buffer) { cam_obj->frame2_buffer_en = 1; } } void cam_dma_config(const cam_config_t *config) { int cnt = 0; if (config->mode.jpeg) { cam_obj->buffer_size = 2048; cam_obj->half_buffer_size = cam_obj->buffer_size / 2; cam_obj->dma_size = 1024; } else { for (cnt = 0;; cnt++) { /*!< Find the divisible buffer size */ if ((config->size.width * config->size.high * 2) % (config->max_buffer_size - cnt) == 0) { break; } } cam_obj->buffer_size = config->max_buffer_size - cnt; cam_obj->half_buffer_size = cam_obj->buffer_size / 2; for (cnt = 0;; cnt++) { /*!< Look for divisible dma sizes */ if ((cam_obj->half_buffer_size) % (CAM_DMA_MAX_SIZE - cnt) == 0) { break; } } cam_obj->dma_size = CAM_DMA_MAX_SIZE - cnt; } cam_obj->node_cnt = (cam_obj->buffer_size) / cam_obj->dma_size; /*!< Number of DMA nodes */ cam_obj->half_node_cnt = cam_obj->node_cnt / 2; cam_obj->total_cnt = (config->size.width * config->size.high * 2) / cam_obj->half_buffer_size; /*!< Number of interrupt copies produced. Ping pong copies */ ESP_LOGI(TAG, "cam_buffer_size: %d, cam_dma_size: %d, cam_dma_node_cnt: %d, cam_total_cnt: %d\n", cam_obj->buffer_size, cam_obj->dma_size, cam_obj->node_cnt, cam_obj->total_cnt); cam_obj->dma = (lldesc_t *)heap_caps_malloc(cam_obj->node_cnt * sizeof(lldesc_t), MALLOC_CAP_DMA); cam_obj->buffer = (uint8_t *)heap_caps_malloc(cam_obj->buffer_size * sizeof(uint8_t), MALLOC_CAP_DMA); for (int x = 0; x < cam_obj->node_cnt; x++) { cam_obj->dma[x].size = cam_obj->dma_size; cam_obj->dma[x].length = cam_obj->dma_size; cam_obj->dma[x].eof = 0; cam_obj->dma[x].owner = 1; cam_obj->dma[x].buf = (cam_obj->buffer + cam_obj->dma_size * x); cam_obj->dma[x].empty = &cam_obj->dma[(x + 1) % cam_obj->node_cnt]; } I2S0.in_link.addr = ((uint32_t)&cam_obj->dma[0]) & 0xfffff; I2S0.rx_eof_num = cam_obj->half_buffer_size; /*!< Ping-pong operation */ } esp_err_t cam_deinit() { if (!cam_obj) { return ESP_FAIL; } cam_stop(); esp_intr_free(cam_obj->intr_handle); vTaskDelete(cam_obj->task_handle); vQueueDelete(cam_obj->event_queue); vQueueDelete(cam_obj->frame_buffer_queue); free(cam_obj->dma); free(cam_obj->buffer); free(cam_obj); return ESP_OK; } esp_err_t cam_init(const cam_config_t *config) { cam_obj = (cam_obj_t *)heap_caps_calloc(1, sizeof(cam_obj_t), MALLOC_CAP_DMA); if (!cam_obj) { ESP_LOGI(TAG, "camera object malloc error\n"); return ESP_FAIL; } cam_obj->width = config->size.width; cam_obj->high = config->size.high; cam_obj->frame1_buffer = config->frame1_buffer; cam_obj->frame2_buffer = config->frame2_buffer; cam_obj->jpeg_mode = config->mode.jpeg; cam_obj->vsync_pin = config->pin.vsync; cam_obj->vsync_invert = config->vsync_invert; cam_obj->hsync_invert = config->hsync_invert; cam_set_pin(config); cam_config(config); cam_dma_config(config); cam_obj->event_queue = xQueueCreate(2, sizeof(cam_event_t)); cam_obj->frame_buffer_queue = xQueueCreate(2, sizeof(frame_buffer_event_t)); if (cam_obj->frame1_buffer != NULL) { ESP_LOGI(TAG, "frame1_buffer_en\n"); cam_obj->frame1_buffer_en = 1; } else { cam_obj->frame1_buffer_en = 0; } if (cam_obj->frame2_buffer != NULL) { ESP_LOGI(TAG, "frame2_buffer_en\n"); cam_obj->frame2_buffer_en = 1; } else { cam_obj->frame2_buffer_en = 0; } esp_intr_alloc(ETS_I2S0_INTR_SOURCE, 0, cam_isr, NULL, &cam_obj->intr_handle); xTaskCreate(cam_task, "cam_task", config->task_stack, NULL, config->task_pri, &cam_obj->task_handle); return ESP_OK; }