/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2019 Lucian Copeland for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "common-hal/pulseio/PulseIn.h" #include #include #include "py/mpconfig.h" #include "py/gc.h" #include "py/runtime.h" #include "shared-bindings/microcontroller/__init__.h" #include "shared-bindings/microcontroller/Pin.h" #include "shared-bindings/pulseio/PulseIn.h" #include "timers.h" #include STM32_HAL_H #define STM32_GPIO_PORT_SIZE 16 static pulseio_pulsein_obj_t* _objs[STM32_GPIO_PORT_SIZE]; STATIC TIM_HandleTypeDef tim_handle; static uint32_t overflow_count = 0; STATIC uint8_t refcount = 0; static void assign_EXTI_Interrupt(pulseio_pulsein_obj_t* self, uint8_t num); void pulsein_timer_event_handler(void) { // Detect TIM Update event if (__HAL_TIM_GET_FLAG(&tim_handle, TIM_FLAG_UPDATE) != RESET) { if (__HAL_TIM_GET_IT_SOURCE(&tim_handle, TIM_IT_UPDATE) != RESET) { __HAL_TIM_CLEAR_IT(&tim_handle, TIM_IT_UPDATE); overflow_count++; } } } static void pulsein_exti_event_handler(uint8_t num) { // Grab the current time first. uint32_t current_overflow = overflow_count; uint32_t current_count = tim_handle.Instance->CNT; // Interrupt register must be cleared manually EXTI->PR = 1 << num; pulseio_pulsein_obj_t* self = _objs[num]; if ( !self ) return; if (self->first_edge) { // first pulse is opposite state from idle bool state = HAL_GPIO_ReadPin(pin_port(self->pin->port), pin_mask(self->pin->number)); if ( self->idle_state != state ) { self->first_edge = false; } } else { uint32_t total_diff = current_count + 0x10000 * (current_overflow - self->last_overflow) - self->last_count; // Cap duration at 16 bits. uint16_t duration = MIN(0xffff, total_diff); uint16_t i = (self->start + self->len) % self->maxlen; self->buffer[i] = duration; if (self->len < self->maxlen) { self->len++; } else { self->start++; } } self->last_count = current_count; self->last_overflow = current_overflow; } void pulsein_reset(void) { // Disable all active interrupts and clear array for (uint i = 0; i < STM32_GPIO_PORT_SIZE; i++) { if (_objs[i] != NULL) { HAL_NVIC_DisableIRQ(_objs[i]->irq); } } memset(_objs, 0, sizeof(_objs)); HAL_TIM_Base_DeInit(&tim_handle); tim_clock_disable(stm_peripherals_timer_get_index(tim_handle.Instance)); memset(&tim_handle, 0, sizeof(tim_handle)); refcount = 0; } void common_hal_pulseio_pulsein_construct(pulseio_pulsein_obj_t* self, const mcu_pin_obj_t* pin, uint16_t maxlen, bool idle_state) { // STM32 has one shared EXTI for each pin number, 0-15 uint8_t p_num = pin->number; if(_objs[p_num]) { mp_raise_ValueError(translate("Pin number already reserved by EXTI")); } _objs[p_num] = self; // Allocate pulse buffer self->buffer = (uint16_t *) m_malloc(maxlen * sizeof(uint16_t), false); if (self->buffer == NULL) { mp_raise_msg_varg(&mp_type_MemoryError, translate("Failed to allocate RX buffer of %d bytes"), maxlen * sizeof(uint16_t)); } // Set internal variables self->pin = pin; self->maxlen = maxlen; self->idle_state = idle_state; self->start = 0; self->len = 0; self->first_edge = true; self->paused = false; self->last_count = 0; self->last_overflow = 0; if (HAL_TIM_Base_GetState(&tim_handle) == HAL_TIM_STATE_RESET) { // Find a suitable timer TIM_TypeDef * tim_instance = stm_peripherals_find_timer(); stm_peripherals_timer_reserve(tim_instance); // Set ticks to 1us uint32_t source = stm_peripherals_timer_get_source_freq(tim_instance); uint32_t prescaler = source/1000000; // Enable clocks and IRQ, set callback stm_peripherals_timer_preinit(tim_instance, 4, pulsein_timer_event_handler); // Set the new period tim_handle.Instance = tim_instance; tim_handle.Init.Prescaler = prescaler - 1; tim_handle.Init.Period = 0x10000 - 1; //65 ms period (maximum) HAL_TIM_Base_Init(&tim_handle); // Set registers manually tim_handle.Instance->SR = 0; // Prevent the SR from triggering an interrupt tim_handle.Instance->CR1 |= TIM_CR1_CEN; // Resume timer tim_handle.Instance->CR1 |= TIM_CR1_URS; // Disable non-overflow interrupts __HAL_TIM_ENABLE_IT(&tim_handle, TIM_IT_UPDATE); overflow_count = 0; } // Add to active PulseIns refcount++; // EXTI pins can also be read as an input GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = pin_mask(pin->number); GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(pin_port(pin->port), &GPIO_InitStruct); // Interrupt starts immediately assign_EXTI_Interrupt(self, pin->number); HAL_NVIC_EnableIRQ(self->irq); common_hal_mcu_pin_claim(pin); } bool common_hal_pulseio_pulsein_deinited(pulseio_pulsein_obj_t* self) { return (self->pin == NULL); } void common_hal_pulseio_pulsein_deinit(pulseio_pulsein_obj_t* self) { if (common_hal_pulseio_pulsein_deinited(self)) { return; } //Remove pulsein slot from shared array _objs[self->pin->number] = NULL; reset_pin_number(self->pin->port, self->pin->number); self->pin = NULL; refcount--; if (refcount == 0) { stm_peripherals_timer_free(tim_handle.Instance); } } void common_hal_pulseio_pulsein_pause(pulseio_pulsein_obj_t* self) { HAL_NVIC_DisableIRQ(self->irq); self->paused = true; } void common_hal_pulseio_pulsein_resume(pulseio_pulsein_obj_t* self, uint16_t trigger_duration) { // Make sure we're paused. if ( !self->paused ) { common_hal_pulseio_pulsein_pause(self); } // Send the trigger pulse. if (trigger_duration > 0) { GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = pin_mask(self->pin->number); GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(pin_port(self->pin->port), &GPIO_InitStruct); HAL_GPIO_WritePin(pin_port(self->pin->port), pin_mask(self->pin->number), !self->idle_state); common_hal_mcu_delay_us((uint32_t)trigger_duration); HAL_GPIO_WritePin(pin_port(self->pin->port), pin_mask(self->pin->number), self->idle_state); GPIO_InitStruct.Pin = pin_mask(self->pin->number); GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(pin_port(self->pin->port), &GPIO_InitStruct); } self->first_edge = true; self->paused = false; self->last_count = 0; self->last_overflow = 0; HAL_NVIC_EnableIRQ(self->irq); } void common_hal_pulseio_pulsein_clear(pulseio_pulsein_obj_t* self) { HAL_NVIC_DisableIRQ(self->irq); self->start = 0; self->len = 0; HAL_NVIC_EnableIRQ(self->irq); } uint16_t common_hal_pulseio_pulsein_get_item(pulseio_pulsein_obj_t* self, int16_t index) { HAL_NVIC_DisableIRQ(self->irq); if (index < 0) { index += self->len; } if (index < 0 || index >= self->len) { HAL_NVIC_EnableIRQ(self->irq); mp_raise_IndexError(translate("index out of range")); } uint16_t value = self->buffer[(self->start + index) % self->maxlen]; HAL_NVIC_EnableIRQ(self->irq); return value; } uint16_t common_hal_pulseio_pulsein_popleft(pulseio_pulsein_obj_t* self) { if (self->len == 0) { mp_raise_IndexError(translate("pop from an empty PulseIn")); } HAL_NVIC_DisableIRQ(self->irq); uint16_t value = self->buffer[self->start]; self->start = (self->start + 1) % self->maxlen; self->len--; HAL_NVIC_EnableIRQ(self->irq); return value; } uint16_t common_hal_pulseio_pulsein_get_maxlen(pulseio_pulsein_obj_t* self) { return self->maxlen; } bool common_hal_pulseio_pulsein_get_paused(pulseio_pulsein_obj_t* self) { return self->paused; } uint16_t common_hal_pulseio_pulsein_get_len(pulseio_pulsein_obj_t* self) { return self->len; } static void assign_EXTI_Interrupt(pulseio_pulsein_obj_t* self, uint8_t num) { if (num == 0) { self->irq = EXTI0_IRQn; } else if (num == 1) { self->irq = EXTI1_IRQn; } else if (num == 2) { self->irq = EXTI2_IRQn; } else if (num == 3) { self->irq = EXTI3_IRQn; } else if (num == 4) { self->irq = EXTI4_IRQn; } else if (num >= 5 && num <= 9 ) { self->irq = EXTI9_5_IRQn; } else if (num >= 10 && num <= 15) { self->irq = EXTI15_10_IRQn; } } void EXTI0_IRQHandler(void) { pulsein_exti_event_handler(0); } void EXTI1_IRQHandler(void) { pulsein_exti_event_handler(1); } void EXTI2_IRQHandler(void) { pulsein_exti_event_handler(2); } void EXTI3_IRQHandler(void) { pulsein_exti_event_handler(3); } void EXTI4_IRQHandler(void) { pulsein_exti_event_handler(4); } void EXTI9_5_IRQHandler(void) { uint32_t pending = EXTI->PR; for (uint i = 5; i <= 9; i++) { if(pending & (1 << i)) { pulsein_exti_event_handler(i); } } } void EXTI15_10_IRQHandler(void) { uint32_t pending = EXTI->PR; for (uint i = 10; i <= 15; i++) { if(pending & (1 << i)) { pulsein_exti_event_handler(i); } } }