/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // TODO make it work with DMA #include <stm32f4xx_hal.h> #include "mpconfig.h" #include "misc.h" #include "qstr.h" #include "obj.h" #include "runtime.h" #include "sdcard.h" #include "pin.h" #include "genhdr/pins.h" #if MICROPY_HW_HAS_SDCARD static SD_HandleTypeDef sd_handle; void sdcard_init(void) { GPIO_InitTypeDef GPIO_Init_Structure; // invalidate the sd_handle sd_handle.Instance = NULL; // configure SD GPIO // we do this here an not in HAL_SD_MspInit because it apparently // makes it more robust to have the pins always pulled high GPIO_Init_Structure.Mode = GPIO_MODE_AF_PP; GPIO_Init_Structure.Pull = GPIO_PULLUP; GPIO_Init_Structure.Speed = GPIO_SPEED_HIGH; GPIO_Init_Structure.Alternate = GPIO_AF12_SDIO; GPIO_Init_Structure.Pin = GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12; HAL_GPIO_Init(GPIOC, &GPIO_Init_Structure); GPIO_Init_Structure.Pin = GPIO_PIN_2; HAL_GPIO_Init(GPIOD, &GPIO_Init_Structure); // configure the SD card detect pin // we do this here so we can detect if the SD card is inserted before powering it on GPIO_Init_Structure.Mode = GPIO_MODE_INPUT; GPIO_Init_Structure.Pull = MICROPY_HW_SDCARD_DETECT_PULL; GPIO_Init_Structure.Speed = GPIO_SPEED_HIGH; GPIO_Init_Structure.Pin = MICROPY_HW_SDCARD_DETECT_PIN.pin_mask; HAL_GPIO_Init(MICROPY_HW_SDCARD_DETECT_PIN.gpio, &GPIO_Init_Structure); } void HAL_SD_MspInit(SD_HandleTypeDef *hsd) { // enable SDIO clock __SDIO_CLK_ENABLE(); // GPIO have already been initialised by sdcard_init // interrupts are not used at the moment // they are needed only for DMA transfer (I think...) } void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) { __SDIO_CLK_DISABLE(); } bool sdcard_is_present(void) { return HAL_GPIO_ReadPin(MICROPY_HW_SDCARD_DETECT_PIN.gpio, MICROPY_HW_SDCARD_DETECT_PIN.pin_mask) == MICROPY_HW_SDCARD_DETECT_PRESENT; } bool sdcard_power_on(void) { if (!sdcard_is_present()) { return false; } // SD device interface configuration sd_handle.Instance = SDIO; sd_handle.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING; sd_handle.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE; sd_handle.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_DISABLE; sd_handle.Init.BusWide = SDIO_BUS_WIDE_1B; sd_handle.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE; sd_handle.Init.ClockDiv = SDIO_TRANSFER_CLK_DIV; // init the SD interface HAL_SD_CardInfoTypedef cardinfo; if (HAL_SD_Init(&sd_handle, &cardinfo) != SD_OK) { goto error; } // configure the SD bus width for wide operation if (HAL_SD_WideBusOperation_Config(&sd_handle, SDIO_BUS_WIDE_4B) != SD_OK) { HAL_SD_DeInit(&sd_handle); goto error; } return true; error: sd_handle.Instance = NULL; return false; } void sdcard_power_off(void) { HAL_SD_DeInit(&sd_handle); sd_handle.Instance = NULL; } uint64_t sdcard_get_capacity_in_bytes(void) { if (sd_handle.Instance == NULL) { return 0; } HAL_SD_CardInfoTypedef cardinfo; HAL_SD_Get_CardInfo(&sd_handle, &cardinfo); return cardinfo.CardCapacity; } bool sdcard_read_blocks(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) { // check that dest pointer is aligned on a 4-byte boundary if (((uint32_t)dest & 3) != 0) { return false; } // check that SD card is initialised if (sd_handle.Instance == NULL) { return false; } // We must disable IRQs because the SDIO peripheral has a small FIFO // buffer and we can't let it fill up in the middle of a read. // This will not be needed when SD uses DMA for transfer. __disable_irq(); HAL_SD_ErrorTypedef err = HAL_SD_ReadBlocks(&sd_handle, (uint32_t*)dest, block_num * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE, num_blocks); __enable_irq(); if (err != SD_OK) { return false; } return true; } bool sdcard_write_blocks(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) { // check that src pointer is aligned on a 4-byte boundary if (((uint32_t)src & 3) != 0) { return false; } // check that SD card is initialised if (sd_handle.Instance == NULL) { return false; } // We must disable IRQs because the SDIO peripheral has a small FIFO // buffer and we can't let it drain to empty in the middle of a write. // This will not be needed when SD uses DMA for transfer. __disable_irq(); HAL_SD_ErrorTypedef err = HAL_SD_WriteBlocks(&sd_handle, (uint32_t*)src, block_num * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE, num_blocks); __enable_irq(); if (err != SD_OK) { return false; } return true; } #if 0 DMA not implemented bool sdcard_read_blocks_dma(uint8_t *dest, uint32_t block_num, uint32_t num_blocks) { // check that dest pointer is aligned on a 4-byte boundary if (((uint32_t)dest & 3) != 0) { return false; } // check that SD card is initialised if (sd_handle.Instance == NULL) { return false; } // do the read if (HAL_SD_ReadBlocks_DMA(&sd_handle, (uint32_t*)dest, block_num * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE) != SD_OK) { return false; } // wait for DMA transfer to finish, with a large timeout if (HAL_SD_CheckReadOperation(&sd_handle, 100000000) != SD_OK) { return false; } return true; } bool sdcard_write_blocks_dma(const uint8_t *src, uint32_t block_num, uint32_t num_blocks) { // check that src pointer is aligned on a 4-byte boundary if (((uint32_t)src & 3) != 0) { return false; } // check that SD card is initialised if (sd_handle.Instance == NULL) { return false; } SD_Error status; status = HAL_SD_WriteBlock_DMA(&sd_handle, (uint32_t*)src, block_num * SDCARD_BLOCK_SIZE, SDCARD_BLOCK_SIZE, num_blocks); if (status != SD_OK) { return false; } // wait for DMA transfer to finish, with a large timeout status = HAL_SD_CheckWriteOperation(&sd_handle, 100000000); if (status != SD_OK) { return false; } return true; } #endif /******************************************************************************/ // Micro Python bindings static mp_obj_t sd_present(mp_obj_t self) { return MP_BOOL(sdcard_is_present()); } static MP_DEFINE_CONST_FUN_OBJ_1(sd_present_obj, sd_present); static mp_obj_t sd_power(mp_obj_t self, mp_obj_t state) { bool result; if (mp_obj_is_true(state)) { result = sdcard_power_on(); } else { sdcard_power_off(); result = true; } return MP_BOOL(result); } static MP_DEFINE_CONST_FUN_OBJ_2(sd_power_obj, sd_power); static mp_obj_t sd_read(mp_obj_t self, mp_obj_t block_num) { uint8_t *dest = m_new(uint8_t, SDCARD_BLOCK_SIZE); if (!sdcard_read_blocks(dest, mp_obj_get_int(block_num), 1)) { m_free(dest, SDCARD_BLOCK_SIZE); return mp_const_none; } return mp_obj_new_bytearray_by_ref(SDCARD_BLOCK_SIZE, dest); } static MP_DEFINE_CONST_FUN_OBJ_2(sd_read_obj, sd_read); STATIC const mp_map_elem_t sdcard_locals_dict_table[] = { { MP_OBJ_NEW_QSTR(MP_QSTR_present), (mp_obj_t)&sd_present_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_power), (mp_obj_t)&sd_power_obj }, { MP_OBJ_NEW_QSTR(MP_QSTR_read), (mp_obj_t)&sd_read_obj }, }; STATIC MP_DEFINE_CONST_DICT(sdcard_locals_dict, sdcard_locals_dict_table); static const mp_obj_type_t sdcard_type = { { &mp_type_type }, .name = MP_QSTR_SDcard, .locals_dict = (mp_obj_t)&sdcard_locals_dict, }; const mp_obj_base_t pyb_sdcard_obj = {&sdcard_type}; #endif // MICROPY_HW_HAS_SDCARD