/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Glenn Ruben Bakke * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "mphalport.h" #include "hal_pwm.h" #ifdef HAL_PWM_MODULE_ENABLED #define PWM_COUNTER_TOP 16000 // 16MHz divided by 16000-> 1ms volatile uint16_t g_pwm_seq[4]; void hal_pwm_init(NRF_PWM_Type * p_instance, hal_pwm_init_t const * p_pwm_init) { uint16_t duty_cycle = ((PWM_COUNTER_TOP*50)/100); g_pwm_seq[0] = duty_cycle; g_pwm_seq[1] = duty_cycle; g_pwm_seq[2] = 0; g_pwm_seq[3] = 0; p_instance->PSEL.OUT[0] = (p_pwm_init->pwm_pin << PWM_PSEL_OUT_PIN_Pos) | (PWM_PSEL_OUT_CONNECT_Connected << PWM_PSEL_OUT_CONNECT_Pos); p_instance->ENABLE = (PWM_ENABLE_ENABLE_Enabled << PWM_ENABLE_ENABLE_Pos); p_instance->MODE = (PWM_MODE_UPDOWN_Up << PWM_MODE_UPDOWN_Pos); p_instance->PRESCALER = (PWM_PRESCALER_PRESCALER_DIV_1 << PWM_PRESCALER_PRESCALER_Pos); p_instance->COUNTERTOP = (PWM_COUNTER_TOP << PWM_COUNTERTOP_COUNTERTOP_Pos); //1 msec p_instance->LOOP = (PWM_LOOP_CNT_Disabled << PWM_LOOP_CNT_Pos); p_instance->DECODER = (PWM_DECODER_LOAD_Individual << PWM_DECODER_LOAD_Pos) | (PWM_DECODER_MODE_RefreshCount << PWM_DECODER_MODE_Pos); p_instance->SEQ[0].PTR = ((uint32_t)(g_pwm_seq) << PWM_SEQ_PTR_PTR_Pos); p_instance->SEQ[0].CNT = ((sizeof(g_pwm_seq) / sizeof(uint16_t)) << PWM_SEQ_CNT_CNT_Pos); p_instance->SEQ[0].REFRESH = 0; p_instance->SEQ[0].ENDDELAY = 0; p_instance->TASKS_SEQSTART[0] = 1; } #endif // HAL_PWM_MODULE_ENABLED