/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Scott Shawcroft * Copyright (c) 2019 Lucian Copeland for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "shared-bindings/busio/SPI.h" #include "py/mperrno.h" #include "py/runtime.h" #include "shared-bindings/microcontroller/__init__.h" #include "supervisor/board.h" #include "supervisor/shared/translate.h" #include "shared-bindings/microcontroller/Pin.h" // Note that any bugs introduced in this file can cause crashes at startup // for chips using external SPI flash. // arrays use 0 based numbering: SPI1 is stored at index 0 #define MAX_SPI 6 STATIC bool reserved_spi[MAX_SPI]; STATIC bool never_reset_spi[MAX_SPI]; #define ALL_CLOCKS 0xFF STATIC void spi_clock_enable(uint8_t mask); STATIC void spi_clock_disable(uint8_t mask); STATIC uint32_t get_busclock(SPI_TypeDef *instance) { #if (CPY_STM32H7) if (instance == SPI1 || instance == SPI2 || instance == SPI3) { return HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI123); } else if (instance == SPI4 || instance == SPI5) { return HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI45); } else { return HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI6); } #elif (CPY_STM32F4 || CPY_STM32F7 || CPY_STM32L4) // SPI2 and 3 are on PCLK1, if they exist. #ifdef SPI2 if (instance == SPI2) { return HAL_RCC_GetPCLK1Freq(); } #endif #ifdef SPI3 if (instance == SPI3) { return HAL_RCC_GetPCLK1Freq(); } #endif return HAL_RCC_GetPCLK2Freq(); #endif } STATIC uint32_t stm32_baud_to_spi_div(uint32_t baudrate, uint16_t *prescaler, uint32_t busclock) { static const uint32_t baud_map[8][2] = { {2,SPI_BAUDRATEPRESCALER_2}, {4,SPI_BAUDRATEPRESCALER_4}, {8,SPI_BAUDRATEPRESCALER_8}, {16,SPI_BAUDRATEPRESCALER_16}, {32,SPI_BAUDRATEPRESCALER_32}, {64,SPI_BAUDRATEPRESCALER_64}, {128,SPI_BAUDRATEPRESCALER_128}, {256,SPI_BAUDRATEPRESCALER_256} }; size_t i = 0; uint16_t divisor; do { divisor = baud_map[i][0]; if (baudrate >= (busclock / divisor)) { *prescaler = divisor; return baud_map[i][1]; } i++; } while (divisor != 256); // only gets here if requested baud is lower than minimum *prescaler = 256; return SPI_BAUDRATEPRESCALER_256; } void spi_reset(void) { uint16_t never_reset_mask = 0x00; for (int i = 0; i < MAX_SPI; i++) { if (!never_reset_spi[i]) { reserved_spi[i] = false; } else { never_reset_mask |= 1 << i; } } spi_clock_disable(ALL_CLOCKS & ~(never_reset_mask)); } STATIC const mcu_periph_obj_t *find_pin_function(const mcu_periph_obj_t *table, size_t sz, const mcu_pin_obj_t *pin, int periph_index) { for (size_t i = 0; i < sz; i++, table++) { if (periph_index == table->periph_index && pin == table->pin) { return table; } } return NULL; } // match pins to SPI objects STATIC int check_pins(busio_spi_obj_t *self, const mcu_pin_obj_t *sck, const mcu_pin_obj_t *mosi, const mcu_pin_obj_t *miso) { bool spi_taken = false; uint8_t sck_len = MP_ARRAY_SIZE(mcu_spi_sck_list); uint8_t mosi_len = MP_ARRAY_SIZE(mcu_spi_mosi_list); uint8_t miso_len = MP_ARRAY_SIZE(mcu_spi_miso_list); // Loop over each possibility for SCK. Check whether MISO and/or MOSI can be used on the same peripheral for (uint i = 0; i < sck_len; i++) { const mcu_periph_obj_t *mcu_spi_sck = &mcu_spi_sck_list[i]; if (mcu_spi_sck->pin != sck) { continue; } int periph_index = mcu_spi_sck->periph_index; const mcu_periph_obj_t *mcu_spi_miso = NULL; if (miso && !(mcu_spi_miso = find_pin_function(mcu_spi_miso_list, miso_len, miso, periph_index))) { continue; } const mcu_periph_obj_t *mcu_spi_mosi = NULL; if (mosi && !(mcu_spi_mosi = find_pin_function(mcu_spi_mosi_list, mosi_len, mosi, periph_index))) { continue; } if (reserved_spi[periph_index - 1]) { spi_taken = true; continue; } self->sck = mcu_spi_sck; self->mosi = mcu_spi_mosi; self->miso = mcu_spi_miso; return periph_index; } if (spi_taken) { mp_raise_ValueError(translate("Hardware busy, try alternative pins")); } else { mp_raise_ValueError_varg(translate("Invalid %q pin selection"), MP_QSTR_SPI); } } void common_hal_busio_spi_construct(busio_spi_obj_t *self, const mcu_pin_obj_t *sck, const mcu_pin_obj_t *mosi, const mcu_pin_obj_t *miso, bool half_duplex) { int periph_index = check_pins(self, sck, mosi, miso); SPI_TypeDef *SPIx = mcu_spi_banks[periph_index - 1]; // Start GPIO for each pin GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = pin_mask(sck->number); GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = self->sck->altfn_index; HAL_GPIO_Init(pin_port(sck->port), &GPIO_InitStruct); if (self->mosi != NULL) { GPIO_InitStruct.Pin = pin_mask(mosi->number); GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = self->mosi->altfn_index; HAL_GPIO_Init(pin_port(mosi->port), &GPIO_InitStruct); } if (self->miso != NULL) { GPIO_InitStruct.Pin = pin_mask(miso->number); GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = self->miso->altfn_index; HAL_GPIO_Init(pin_port(miso->port), &GPIO_InitStruct); } spi_clock_enable(1 << (self->sck->periph_index - 1)); reserved_spi[self->sck->periph_index - 1] = true; self->handle.Instance = SPIx; self->handle.Init.Mode = SPI_MODE_MASTER; // Direction change only required for RX-only, see RefMan RM0090:884 if (half_duplex) { self->handle.Init.Direction = SPI_DIRECTION_1LINE; } else { self->handle.Init.Direction = (self->mosi == NULL) ? SPI_DIRECTION_2LINES_RXONLY : SPI_DIRECTION_2LINES; } self->handle.Init.DataSize = SPI_DATASIZE_8BIT; self->handle.Init.CLKPolarity = SPI_POLARITY_LOW; self->handle.Init.CLKPhase = SPI_PHASE_1EDGE; self->handle.Init.NSS = SPI_NSS_SOFT; self->handle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; self->handle.Init.FirstBit = SPI_FIRSTBIT_MSB; self->handle.Init.TIMode = SPI_TIMODE_DISABLE; self->handle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; self->handle.Init.CRCPolynomial = 10; if (HAL_SPI_Init(&self->handle) != HAL_OK) { mp_raise_ValueError(translate("SPI Init Error")); } self->baudrate = (get_busclock(SPIx) / 16); self->prescaler = 16; self->half_duplex = half_duplex; self->polarity = 0; self->phase = 0; self->bits = 8; common_hal_mcu_pin_claim(sck); if (self->mosi != NULL) { common_hal_mcu_pin_claim(mosi); } if (self->miso != NULL) { common_hal_mcu_pin_claim(miso); } } void common_hal_busio_spi_never_reset(busio_spi_obj_t *self) { never_reset_spi[self->sck->periph_index - 1] = true; never_reset_pin_number(self->sck->pin->port, self->sck->pin->number); if (self->mosi != NULL) { never_reset_pin_number(self->mosi->pin->port, self->mosi->pin->number); } if (self->miso != NULL) { never_reset_pin_number(self->miso->pin->port, self->miso->pin->number); } } bool common_hal_busio_spi_deinited(busio_spi_obj_t *self) { return self->sck == NULL; } void common_hal_busio_spi_deinit(busio_spi_obj_t *self) { if (common_hal_busio_spi_deinited(self)) { return; } spi_clock_disable(1 << (self->sck->periph_index - 1)); reserved_spi[self->sck->periph_index - 1] = false; never_reset_spi[self->sck->periph_index - 1] = false; reset_pin_number(self->sck->pin->port,self->sck->pin->number); if (self->mosi != NULL) { reset_pin_number(self->mosi->pin->port,self->mosi->pin->number); } if (self->miso != NULL) { reset_pin_number(self->miso->pin->port,self->miso->pin->number); } self->sck = NULL; self->mosi = NULL; self->miso = NULL; } bool common_hal_busio_spi_configure(busio_spi_obj_t *self, uint32_t baudrate, uint8_t polarity, uint8_t phase, uint8_t bits) { // This resets the SPI, so check before updating it redundantly if (baudrate == self->baudrate && polarity == self->polarity && phase == self->phase && bits == self->bits) { return true; } // Deinit SPI HAL_SPI_DeInit(&self->handle); self->handle.Init.DataSize = (bits == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT; self->handle.Init.CLKPolarity = (polarity) ? SPI_POLARITY_HIGH : SPI_POLARITY_LOW; self->handle.Init.CLKPhase = (phase) ? SPI_PHASE_2EDGE : SPI_PHASE_1EDGE; self->handle.Init.BaudRatePrescaler = stm32_baud_to_spi_div(baudrate, &self->prescaler, get_busclock(self->handle.Instance)); if (HAL_SPI_Init(&self->handle) != HAL_OK) { mp_raise_ValueError(translate("SPI Re-initialization error")); } self->baudrate = baudrate; self->polarity = polarity; self->phase = phase; self->bits = bits; return true; } bool common_hal_busio_spi_try_lock(busio_spi_obj_t *self) { bool grabbed_lock = false; // Critical section code that may be required at some point. // uint32_t store_primask = __get_PRIMASK(); // __disable_irq(); // __DMB(); if (!self->has_lock) { grabbed_lock = true; self->has_lock = true; } // __DMB(); // __set_PRIMASK(store_primask); return grabbed_lock; } bool common_hal_busio_spi_has_lock(busio_spi_obj_t *self) { return self->has_lock; } void common_hal_busio_spi_unlock(busio_spi_obj_t *self) { self->has_lock = false; } bool common_hal_busio_spi_write(busio_spi_obj_t *self, const uint8_t *data, size_t len) { if (self->mosi == NULL) { mp_raise_ValueError(translate("No MOSI Pin")); } HAL_StatusTypeDef result = HAL_SPI_Transmit(&self->handle, (uint8_t *)data, (uint16_t)len, HAL_MAX_DELAY); return result == HAL_OK; } bool common_hal_busio_spi_read(busio_spi_obj_t *self, uint8_t *data, size_t len, uint8_t write_value) { if (self->miso == NULL && !self->half_duplex) { mp_raise_ValueError(translate("No MISO Pin")); } else if (self->half_duplex && self->mosi == NULL) { mp_raise_ValueError(translate("No MOSI Pin")); } HAL_StatusTypeDef result = HAL_OK; if ((!self->half_duplex && self->mosi == NULL) || (self->half_duplex && self->mosi != NULL && self->miso == NULL)) { result = HAL_SPI_Receive(&self->handle, data, (uint16_t)len, HAL_MAX_DELAY); } else { memset(data, write_value, len); result = HAL_SPI_TransmitReceive(&self->handle, data, data, (uint16_t)len, HAL_MAX_DELAY); } return result == HAL_OK; } bool common_hal_busio_spi_transfer(busio_spi_obj_t *self, const uint8_t *data_out, uint8_t *data_in, size_t len) { if (self->miso == NULL || self->mosi == NULL) { mp_raise_ValueError(translate("Missing MISO or MOSI Pin")); } HAL_StatusTypeDef result = HAL_SPI_TransmitReceive(&self->handle, (uint8_t *)data_out, data_in, (uint16_t)len,HAL_MAX_DELAY); return result == HAL_OK; } uint32_t common_hal_busio_spi_get_frequency(busio_spi_obj_t *self) { // returns actual frequency uint32_t result = HAL_RCC_GetPCLK2Freq() / self->prescaler; return result; } uint8_t common_hal_busio_spi_get_phase(busio_spi_obj_t *self) { return self->phase; } uint8_t common_hal_busio_spi_get_polarity(busio_spi_obj_t *self) { return self->polarity; } STATIC void spi_clock_enable(uint8_t mask) { #ifdef SPI1 if (mask & (1 << 0)) { __HAL_RCC_SPI1_CLK_ENABLE(); } #endif #ifdef SPI2 if (mask & (1 << 1)) { __HAL_RCC_SPI2_CLK_ENABLE(); } #endif #ifdef SPI3 if (mask & (1 << 2)) { __HAL_RCC_SPI3_CLK_ENABLE(); } #endif #ifdef SPI4 if (mask & (1 << 3)) { __HAL_RCC_SPI4_CLK_ENABLE(); } #endif #ifdef SPI5 if (mask & (1 << 4)) { __HAL_RCC_SPI5_CLK_ENABLE(); } #endif #ifdef SPI6 if (mask & (1 << 5)) { __HAL_RCC_SPI6_CLK_ENABLE(); } #endif } STATIC void spi_clock_disable(uint8_t mask) { #ifdef SPI1 if (mask & (1 << 0)) { __HAL_RCC_SPI1_CLK_DISABLE(); __HAL_RCC_SPI1_FORCE_RESET(); __HAL_RCC_SPI1_RELEASE_RESET(); } #endif #ifdef SPI2 if (mask & (1 << 1)) { __HAL_RCC_SPI2_CLK_DISABLE(); __HAL_RCC_SPI2_FORCE_RESET(); __HAL_RCC_SPI2_RELEASE_RESET(); } #endif #ifdef SPI3 if (mask & (1 << 2)) { __HAL_RCC_SPI3_CLK_DISABLE(); __HAL_RCC_SPI3_FORCE_RESET(); __HAL_RCC_SPI3_RELEASE_RESET(); } #endif #ifdef SPI4 if (mask & (1 << 3)) { __HAL_RCC_SPI4_CLK_DISABLE(); __HAL_RCC_SPI4_FORCE_RESET(); __HAL_RCC_SPI4_RELEASE_RESET(); } #endif #ifdef SPI5 if (mask & (1 << 4)) { __HAL_RCC_SPI5_CLK_DISABLE(); __HAL_RCC_SPI5_FORCE_RESET(); __HAL_RCC_SPI5_RELEASE_RESET(); } #endif #ifdef SPI6 if (mask & (1 << 5)) { __HAL_RCC_SPI6_CLK_DISABLE(); __HAL_RCC_SPI6_FORCE_RESET(); __HAL_RCC_SPI6_RELEASE_RESET(); } #endif }