/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2018 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-bindings/audiocore/WaveFile.h" #include #include #include "py/mperrno.h" #include "py/runtime.h" #include "shared-module/audiocore/WaveFile.h" #include "supervisor/shared/translate.h" struct wave_format_chunk { uint16_t audio_format; uint16_t num_channels; uint32_t sample_rate; uint32_t byte_rate; uint16_t block_align; uint16_t bits_per_sample; uint16_t extra_params; // Assumed to be zero below. }; void common_hal_audioio_wavefile_construct(audioio_wavefile_obj_t* self, pyb_file_obj_t* file, uint8_t *buffer, size_t buffer_size) { // Load the wave self->file = file; uint8_t chunk_header[16]; f_rewind(&self->file->fp); UINT bytes_read; if (f_read(&self->file->fp, chunk_header, 16, &bytes_read) != FR_OK) { mp_raise_OSError(MP_EIO); } if (bytes_read != 16 || memcmp(chunk_header, "RIFF", 4) != 0 || memcmp(chunk_header + 8, "WAVEfmt ", 8) != 0) { mp_raise_ValueError(translate("Invalid wave file")); } uint32_t format_size; if (f_read(&self->file->fp, &format_size, 4, &bytes_read) != FR_OK) { mp_raise_OSError(MP_EIO); } if (bytes_read != 4 || format_size > sizeof(struct wave_format_chunk)) { mp_raise_ValueError(translate("Invalid format chunk size")); } struct wave_format_chunk format; if (f_read(&self->file->fp, &format, format_size, &bytes_read) != FR_OK) { mp_raise_OSError(MP_EIO); } if (bytes_read != format_size) { } if (format.audio_format != 1 || format.num_channels > 2 || format.bits_per_sample > 16 || (format_size == 18 && format.extra_params != 0)) { mp_raise_ValueError(translate("Unsupported format")); } // Get the sample_rate self->sample_rate = format.sample_rate; self->channel_count = format.num_channels; self->bits_per_sample = format.bits_per_sample; // TODO(tannewt): Skip any extra chunks that occur before the data section. uint8_t data_tag[4]; if (f_read(&self->file->fp, &data_tag, 4, &bytes_read) != FR_OK) { mp_raise_OSError(MP_EIO); } if (bytes_read != 4 || memcmp((uint8_t *) data_tag, "data", 4) != 0) { mp_raise_ValueError(translate("Data chunk must follow fmt chunk")); } uint32_t data_length; if (f_read(&self->file->fp, &data_length, 4, &bytes_read) != FR_OK) { mp_raise_OSError(MP_EIO); } if (bytes_read != 4) { mp_raise_ValueError(translate("Invalid file")); } self->file_length = data_length; self->data_start = self->file->fp.fptr; // Try to allocate two buffers, one will be loaded from file and the other // DMAed to DAC. if (buffer_size) { self->len = buffer_size / 2; self->buffer = buffer; self->second_buffer = buffer + self->len; } else { self->len = 256; self->buffer = m_malloc(self->len, false); if (self->buffer == NULL) { common_hal_audioio_wavefile_deinit(self); mp_raise_msg(&mp_type_MemoryError, translate("Couldn't allocate first buffer")); } self->second_buffer = m_malloc(self->len, false); if (self->second_buffer == NULL) { common_hal_audioio_wavefile_deinit(self); mp_raise_msg(&mp_type_MemoryError, translate("Couldn't allocate second buffer")); } } } void common_hal_audioio_wavefile_deinit(audioio_wavefile_obj_t* self) { self->buffer = NULL; self->second_buffer = NULL; } bool common_hal_audioio_wavefile_deinited(audioio_wavefile_obj_t* self) { return self->buffer == NULL; } uint32_t common_hal_audioio_wavefile_get_sample_rate(audioio_wavefile_obj_t* self) { return self->sample_rate; } void common_hal_audioio_wavefile_set_sample_rate(audioio_wavefile_obj_t* self, uint32_t sample_rate) { self->sample_rate = sample_rate; } uint8_t common_hal_audioio_wavefile_get_bits_per_sample(audioio_wavefile_obj_t* self) { return self->bits_per_sample; } uint8_t common_hal_audioio_wavefile_get_channel_count(audioio_wavefile_obj_t* self) { return self->channel_count; } bool audioio_wavefile_samples_signed(audioio_wavefile_obj_t* self) { return self->bits_per_sample > 8; } uint32_t audioio_wavefile_max_buffer_length(audioio_wavefile_obj_t* self) { return 512; } void audioio_wavefile_reset_buffer(audioio_wavefile_obj_t* self, bool single_channel, uint8_t channel) { if (single_channel && channel == 1) { return; } // We don't reset the buffer index in case we're looping and we have an odd number of buffer // loads self->bytes_remaining = self->file_length; f_lseek(&self->file->fp, self->data_start); self->read_count = 0; self->left_read_count = 0; self->right_read_count = 0; } audioio_get_buffer_result_t audioio_wavefile_get_buffer(audioio_wavefile_obj_t* self, bool single_channel, uint8_t channel, uint8_t** buffer, uint32_t* buffer_length) { if (!single_channel) { channel = 0; } uint32_t channel_read_count = self->left_read_count; if (channel == 1) { channel_read_count = self->right_read_count; } bool need_more_data = self->read_count == channel_read_count; if (self->bytes_remaining == 0 && need_more_data) { *buffer = NULL; *buffer_length = 0; return GET_BUFFER_DONE; } if (need_more_data) { uint16_t num_bytes_to_load = self->len; if (num_bytes_to_load > self->bytes_remaining) { num_bytes_to_load = self->bytes_remaining; } UINT length_read; if (self->buffer_index % 2 == 1) { *buffer = self->second_buffer; } else { *buffer = self->buffer; } if (f_read(&self->file->fp, *buffer, num_bytes_to_load, &length_read) != FR_OK) { return GET_BUFFER_ERROR; } self->bytes_remaining -= length_read; // Pad the last buffer to word align it. if (self->bytes_remaining == 0 && length_read % sizeof(uint32_t) != 0) { uint32_t pad = length_read % sizeof(uint32_t); length_read += pad; if (self->bits_per_sample == 8) { for (uint32_t i = 0; i < pad; i++) { ((uint8_t*) (*buffer))[length_read / sizeof(uint8_t) - i - 1] = 0x80; } } else if (self->bits_per_sample == 16) { // We know the buffer is aligned because we allocated it onto the heap ourselves. #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-align" ((int16_t*) (*buffer))[length_read / sizeof(int16_t) - 1] = 0; #pragma GCC diagnostic pop } } *buffer_length = length_read; if (self->buffer_index % 2 == 1) { self->second_buffer_length = length_read; } else { self->buffer_length = length_read; } self->buffer_index += 1; self->read_count += 1; } uint32_t buffers_back = self->read_count - 1 - channel_read_count; if ((self->buffer_index - buffers_back) % 2 == 0) { *buffer = self->second_buffer; *buffer_length = self->second_buffer_length; } else { *buffer = self->buffer; *buffer_length = self->buffer_length; } if (channel == 0) { self->left_read_count += 1; } else if (channel == 1) { self->right_read_count += 1; *buffer = *buffer + self->bits_per_sample / 8; } return self->bytes_remaining == 0 ? GET_BUFFER_DONE : GET_BUFFER_MORE_DATA; } void audioio_wavefile_get_buffer_structure(audioio_wavefile_obj_t* self, bool single_channel, bool* single_buffer, bool* samples_signed, uint32_t* max_buffer_length, uint8_t* spacing) { *single_buffer = false; *samples_signed = self->bits_per_sample > 8; *max_buffer_length = 512; if (single_channel) { *spacing = self->channel_count; } else { *spacing = 1; } }