/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2013-2020 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/runtime.h" #include "py/stackctrl.h" #include "py/gc.h" #include "py/mperrno.h" #include "py/mphal.h" #include "shared/readline/readline.h" #include "shared/runtime/pyexec.h" #include "lib/oofatfs/ff.h" #include "lib/littlefs/lfs1.h" #include "lib/littlefs/lfs1_util.h" #include "lib/littlefs/lfs2.h" #include "lib/littlefs/lfs2_util.h" #include "extmod/modnetwork.h" #include "extmod/vfs.h" #include "extmod/vfs_fat.h" #include "extmod/vfs_lfs.h" #if MICROPY_PY_LWIP #include "lwip/init.h" #include "lwip/apps/mdns.h" #include "drivers/cyw43/cyw43.h" #endif #if MICROPY_PY_BLUETOOTH #include "extmod/modbluetooth.h" #endif #include "boardctrl.h" #include "mpbthciport.h" #include "mpu.h" #include "rfcore.h" #include "systick.h" #include "pendsv.h" #include "powerctrl.h" #include "pybthread.h" #include "gccollect.h" #include "factoryreset.h" #include "modmachine.h" #include "softtimer.h" #include "i2c.h" #include "spi.h" #include "uart.h" #include "timer.h" #include "led.h" #include "pin.h" #include "extint.h" #include "usrsw.h" #include "usb.h" #include "rtc.h" #include "storage.h" #include "sdcard.h" #include "sdram.h" #include "rng.h" #include "accel.h" #include "servo.h" #include "dac.h" #include "can.h" #if MICROPY_PY_THREAD STATIC pyb_thread_t pyb_thread_main; #endif #if defined(MICROPY_HW_UART_REPL) #ifndef MICROPY_HW_UART_REPL_RXBUF #define MICROPY_HW_UART_REPL_RXBUF (260) #endif STATIC pyb_uart_obj_t pyb_uart_repl_obj; STATIC uint8_t pyb_uart_repl_rxbuf[MICROPY_HW_UART_REPL_RXBUF]; #endif void NORETURN __fatal_error(const char *msg) { for (volatile uint delay = 0; delay < 10000000; delay++) { } led_state(1, 1); led_state(2, 1); led_state(3, 1); led_state(4, 1); mp_hal_stdout_tx_strn("\nFATAL ERROR:\n", 14); mp_hal_stdout_tx_strn(msg, strlen(msg)); for (uint i = 0;;) { led_toggle(((i++) & 3) + 1); for (volatile uint delay = 0; delay < 10000000; delay++) { } if (i >= 16) { // to conserve power __WFI(); } } } void nlr_jump_fail(void *val) { printf("FATAL: uncaught exception %p\n", val); mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(val)); __fatal_error(""); } void abort(void) { __fatal_error("abort"); } #ifndef NDEBUG void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) { (void)func; printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line); __fatal_error(""); } #endif STATIC mp_obj_t pyb_main(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) { static const mp_arg_t allowed_args[] = { { MP_QSTR_opt, MP_ARG_INT, {.u_int = 0} } }; if (mp_obj_is_str(pos_args[0])) { MP_STATE_PORT(pyb_config_main) = pos_args[0]; // parse args mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); #if MICROPY_ENABLE_COMPILER MP_STATE_VM(mp_optimise_value) = args[0].u_int; #endif } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_KW(pyb_main_obj, 1, pyb_main); #if MICROPY_HW_FLASH_MOUNT_AT_BOOT // avoid inlining to avoid stack usage within main() MP_NOINLINE STATIC bool init_flash_fs(uint reset_mode) { if (reset_mode == BOARDCTRL_RESET_MODE_FACTORY_FILESYSTEM) { // Asked by user to reset filesystem factory_reset_create_filesystem(); } // Default block device to entire flash storage mp_obj_t bdev = MP_OBJ_FROM_PTR(&pyb_flash_obj); int ret; #if MICROPY_VFS_LFS1 || MICROPY_VFS_LFS2 // Try to detect the block device used for the main filesystem based on the // contents of the superblock, which can be the first or second block. mp_int_t len = -1; uint8_t buf[64]; for (size_t block_num = 0; block_num <= 1; ++block_num) { ret = storage_readblocks_ext(buf, block_num, 0, sizeof(buf)); #if MICROPY_VFS_LFS1 if (ret == 0 && memcmp(&buf[40], "littlefs", 8) == 0) { // LFS1 lfs1_superblock_t *superblock = (void *)&buf[12]; uint32_t block_size = lfs1_fromle32(superblock->d.block_size); uint32_t block_count = lfs1_fromle32(superblock->d.block_count); len = block_count * block_size; break; } #endif #if MICROPY_VFS_LFS2 if (ret == 0 && memcmp(&buf[8], "littlefs", 8) == 0) { // LFS2 lfs2_superblock_t *superblock = (void *)&buf[20]; uint32_t block_size = lfs2_fromle32(superblock->block_size); uint32_t block_count = lfs2_fromle32(superblock->block_count); len = block_count * block_size; break; } #endif } if (len != -1) { // Detected a littlefs filesystem so create correct block device for it mp_obj_t args[] = { MP_OBJ_NEW_QSTR(MP_QSTR_len), MP_OBJ_NEW_SMALL_INT(len) }; bdev = pyb_flash_type.make_new(&pyb_flash_type, 0, 1, args); } #endif // Try to mount the flash on "/flash" and chdir to it for the boot-up directory. mp_obj_t mount_point = MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash); ret = mp_vfs_mount_and_chdir_protected(bdev, mount_point); if (ret == -MP_ENODEV && bdev == MP_OBJ_FROM_PTR(&pyb_flash_obj) && reset_mode != BOARDCTRL_RESET_MODE_FACTORY_FILESYSTEM) { // No filesystem, bdev is still the default (so didn't detect a possibly corrupt littlefs), // and didn't already create a filesystem, so try to create a fresh one now. ret = factory_reset_create_filesystem(); if (ret == 0) { ret = mp_vfs_mount_and_chdir_protected(bdev, mount_point); } } if (ret != 0) { printf("MPY: can't mount flash\n"); return false; } return true; } #endif #if MICROPY_HW_SDCARD_MOUNT_AT_BOOT STATIC bool init_sdcard_fs(void) { bool first_part = true; for (int part_num = 1; part_num <= 4; ++part_num) { // create vfs object fs_user_mount_t *vfs_fat = m_new_obj_maybe(fs_user_mount_t); mp_vfs_mount_t *vfs = m_new_obj_maybe(mp_vfs_mount_t); if (vfs == NULL || vfs_fat == NULL) { break; } vfs_fat->blockdev.flags = MP_BLOCKDEV_FLAG_FREE_OBJ; sdcard_init_vfs(vfs_fat, part_num); // try to mount the partition FRESULT res = f_mount(&vfs_fat->fatfs); if (res != FR_OK) { // couldn't mount m_del_obj(fs_user_mount_t, vfs_fat); m_del_obj(mp_vfs_mount_t, vfs); } else { // mounted via FatFs, now mount the SD partition in the VFS if (first_part) { // the first available partition is traditionally called "sd" for simplicity vfs->str = "/sd"; vfs->len = 3; } else { // subsequent partitions are numbered by their index in the partition table if (part_num == 2) { vfs->str = "/sd2"; } else if (part_num == 3) { vfs->str = "/sd3"; } else { vfs->str = "/sd4"; } vfs->len = 4; } vfs->obj = MP_OBJ_FROM_PTR(vfs_fat); vfs->next = NULL; for (mp_vfs_mount_t **m = &MP_STATE_VM(vfs_mount_table);; m = &(*m)->next) { if (*m == NULL) { *m = vfs; break; } } #if MICROPY_HW_ENABLE_USB if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_NONE) { // if no USB MSC medium is selected then use the SD card pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_SDCARD; } #endif #if MICROPY_HW_ENABLE_USB // only use SD card as current directory if that's what the USB medium is if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_SDCARD) #endif { if (first_part) { // use SD card as current directory MP_STATE_PORT(vfs_cur) = vfs; } } first_part = false; } } if (first_part) { printf("MPY: can't mount SD card\n"); return false; } else { return true; } } #endif void stm32_main(uint32_t reset_mode) { #if !defined(STM32F0) && defined(MICROPY_HW_VTOR) // Change IRQ vector table if configured differently SCB->VTOR = MICROPY_HW_VTOR; #endif // Enable 8-byte stack alignment for IRQ handlers, in accord with EABI SCB->CCR |= SCB_CCR_STKALIGN_Msk; // Hook for a board to run code at start up, for example check if a // bootloader should be entered instead of the main application. MICROPY_BOARD_STARTUP(); // Enable caches and prefetch buffers #if defined(STM32F4) #if INSTRUCTION_CACHE_ENABLE __HAL_FLASH_INSTRUCTION_CACHE_ENABLE(); #endif #if DATA_CACHE_ENABLE __HAL_FLASH_DATA_CACHE_ENABLE(); #endif #if PREFETCH_ENABLE __HAL_FLASH_PREFETCH_BUFFER_ENABLE(); #endif #elif defined(STM32F7) || defined(STM32H7) #if ART_ACCLERATOR_ENABLE __HAL_FLASH_ART_ENABLE(); #endif SCB_EnableICache(); SCB_EnableDCache(); #elif defined(STM32L4) #if !INSTRUCTION_CACHE_ENABLE __HAL_FLASH_INSTRUCTION_CACHE_DISABLE(); #endif #if !DATA_CACHE_ENABLE __HAL_FLASH_DATA_CACHE_DISABLE(); #endif #if PREFETCH_ENABLE __HAL_FLASH_PREFETCH_BUFFER_ENABLE(); #endif #endif mpu_init(); #if __CORTEX_M >= 0x03 // Set the priority grouping NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4); #endif // SysTick is needed by HAL_RCC_ClockConfig (called in SystemClock_Config) HAL_InitTick(TICK_INT_PRIORITY); // set the system clock to be HSE SystemClock_Config(); #if defined(STM32F4) || defined(STM32F7) #if defined(__HAL_RCC_DTCMRAMEN_CLK_ENABLE) // The STM32F746 doesn't really have CCM memory, but it does have DTCM, // which behaves more or less like normal SRAM. __HAL_RCC_DTCMRAMEN_CLK_ENABLE(); #elif defined(CCMDATARAM_BASE) // enable the CCM RAM __HAL_RCC_CCMDATARAMEN_CLK_ENABLE(); #endif #elif defined(STM32H7A3xx) || defined(STM32H7A3xxQ) || defined(STM32H7B3xx) || defined(STM32H7B3xxQ) // Enable SRAM clock. __HAL_RCC_SRDSRAM_CLK_ENABLE(); #elif defined(STM32H7) // Enable D2 SRAM1/2/3 clocks. __HAL_RCC_D2SRAM1_CLK_ENABLE(); __HAL_RCC_D2SRAM2_CLK_ENABLE(); __HAL_RCC_D2SRAM3_CLK_ENABLE(); #endif MICROPY_BOARD_EARLY_INIT(); // basic sub-system init #if defined(STM32WB) rfcore_init(); #endif #if MICROPY_HW_SDRAM_SIZE sdram_init(); bool sdram_valid = true; UNUSED(sdram_valid); #if MICROPY_HW_SDRAM_STARTUP_TEST sdram_valid = sdram_test(false); #endif #endif #if MICROPY_PY_THREAD pyb_thread_init(&pyb_thread_main); #endif pendsv_init(); led_init(); #if MICROPY_HW_HAS_SWITCH switch_init0(); #endif machine_init(); #if MICROPY_HW_ENABLE_RTC rtc_init_start(false); #endif uart_init0(); spi_init0(); #if MICROPY_PY_PYB_LEGACY && MICROPY_HW_ENABLE_HW_I2C i2c_init0(); #endif #if MICROPY_HW_ENABLE_SDCARD || MICROPY_HW_ENABLE_MMCARD sdcard_init(); #endif #if MICROPY_HW_ENABLE_STORAGE storage_init(); #endif #if MICROPY_PY_LWIP // lwIP doesn't allow to reinitialise itself by subsequent calls to this function // because the system timeout list (next_timeout) is only ever reset by BSS clearing. // So for now we only init the lwIP stack once on power-up. lwip_init(); #if LWIP_MDNS_RESPONDER mdns_resp_init(); #endif systick_enable_dispatch(SYSTICK_DISPATCH_LWIP, mod_network_lwip_poll_wrapper); #endif #if MICROPY_PY_BLUETOOTH mp_bluetooth_hci_init(); #endif #if MICROPY_PY_NETWORK_CYW43 { cyw43_init(&cyw43_state); uint8_t buf[8]; memcpy(&buf[0], "PYBD", 4); mp_hal_get_mac_ascii(MP_HAL_MAC_WLAN0, 8, 4, (char *)&buf[4]); cyw43_wifi_ap_set_ssid(&cyw43_state, 8, buf); cyw43_wifi_ap_set_password(&cyw43_state, 8, (const uint8_t *)"pybd0123"); } #endif #if defined(MICROPY_HW_UART_REPL) // Set up a UART REPL using a statically allocated object pyb_uart_repl_obj.base.type = &pyb_uart_type; pyb_uart_repl_obj.uart_id = MICROPY_HW_UART_REPL; pyb_uart_repl_obj.is_static = true; pyb_uart_repl_obj.timeout = 0; pyb_uart_repl_obj.timeout_char = 2; uart_init(&pyb_uart_repl_obj, MICROPY_HW_UART_REPL_BAUD, UART_WORDLENGTH_8B, UART_PARITY_NONE, UART_STOPBITS_1, 0); uart_set_rxbuf(&pyb_uart_repl_obj, sizeof(pyb_uart_repl_rxbuf), pyb_uart_repl_rxbuf); uart_attach_to_repl(&pyb_uart_repl_obj, true); MP_STATE_PORT(pyb_uart_obj_all)[MICROPY_HW_UART_REPL - 1] = &pyb_uart_repl_obj; #endif boardctrl_state_t state; state.reset_mode = reset_mode; state.log_soft_reset = false; MICROPY_BOARD_BEFORE_SOFT_RESET_LOOP(&state); soft_reset: MICROPY_BOARD_TOP_SOFT_RESET_LOOP(&state); // Python threading init #if MICROPY_PY_THREAD mp_thread_init(); #endif // Stack limit should be less than real stack size, so we have a chance // to recover from limit hit. (Limit is measured in bytes.) // Note: stack control relies on main thread being initialised above mp_stack_set_top(&_estack); mp_stack_set_limit((char *)&_estack - (char *)&_sstack - 1024); // GC init gc_init(MICROPY_HEAP_START, MICROPY_HEAP_END); #if MICROPY_ENABLE_PYSTACK static mp_obj_t pystack[384]; mp_pystack_init(pystack, &pystack[384]); #endif // MicroPython init mp_init(); mp_obj_list_init(MP_OBJ_TO_PTR(mp_sys_path), 0); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script) mp_obj_list_init(MP_OBJ_TO_PTR(mp_sys_argv), 0); // Initialise low-level sub-systems. Here we need to very basic things like // zeroing out memory and resetting any of the sub-systems. Following this // we can run Python scripts (eg boot.py), but anything that is configurable // by boot.py must be set after boot.py is run. #if defined(MICROPY_HW_UART_REPL) MP_STATE_PORT(pyb_stdio_uart) = &pyb_uart_repl_obj; #else MP_STATE_PORT(pyb_stdio_uart) = NULL; #endif readline_init0(); pin_init0(); extint_init0(); timer_init0(); #if MICROPY_HW_ENABLE_CAN can_init0(); #endif #if MICROPY_HW_ENABLE_USB pyb_usb_init0(); #endif #if MICROPY_HW_ENABLE_I2S machine_i2s_init0(); #endif // Initialise the local flash filesystem. // Create it if needed, mount in on /flash, and set it as current dir. bool mounted_flash = false; #if MICROPY_HW_FLASH_MOUNT_AT_BOOT mounted_flash = init_flash_fs(state.reset_mode); #endif bool mounted_sdcard = false; #if MICROPY_HW_SDCARD_MOUNT_AT_BOOT // if an SD card is present then mount it on /sd/ if (sdcard_is_present()) { // if there is a file in the flash called "SKIPSD", then we don't mount the SD card if (!mounted_flash || mp_vfs_import_stat("SKIPSD") == MP_IMPORT_STAT_NO_EXIST) { mounted_sdcard = init_sdcard_fs(); } } #endif #if MICROPY_HW_ENABLE_USB // if the SD card isn't used as the USB MSC medium then use the internal flash if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_NONE) { pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_FLASH; } #endif // set sys.path based on mounted filesystems (/sd is first so it can override /flash) if (mounted_sdcard) { mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd)); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd_slash_lib)); } if (mounted_flash) { mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash)); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib)); } // reset config variables; they should be set by boot.py MP_STATE_PORT(pyb_config_main) = MP_OBJ_NULL; // Run optional frozen boot code. #ifdef MICROPY_BOARD_FROZEN_BOOT_FILE pyexec_frozen_module(MICROPY_BOARD_FROZEN_BOOT_FILE); #endif // Run boot.py (or whatever else a board configures at this stage). if (MICROPY_BOARD_RUN_BOOT_PY(&state) == BOARDCTRL_GOTO_SOFT_RESET_EXIT) { goto soft_reset_exit; } // Now we initialise sub-systems that need configuration from boot.py, // or whose initialisation can be safely deferred until after running // boot.py. #if MICROPY_HW_ENABLE_USB // init USB device to default setting if it was not already configured if (!(pyb_usb_flags & PYB_USB_FLAG_USB_MODE_CALLED)) { #if MICROPY_HW_USB_MSC const uint16_t pid = MICROPY_HW_USB_PID_CDC_MSC; const uint8_t mode = USBD_MODE_CDC_MSC; #else const uint16_t pid = MICROPY_HW_USB_PID_CDC; const uint8_t mode = USBD_MODE_CDC; #endif pyb_usb_dev_init(pyb_usb_dev_detect(), MICROPY_HW_USB_VID, pid, mode, 0, NULL, NULL); } #endif #if MICROPY_HW_HAS_MMA7660 // MMA accel: init and reset accel_init(); #endif #if MICROPY_HW_ENABLE_SERVO servo_init(); #endif #if MICROPY_PY_NETWORK mod_network_init(); #endif // At this point everything is fully configured and initialised. // Run main.py (or whatever else a board configures at this stage). if (MICROPY_BOARD_RUN_MAIN_PY(&state) == BOARDCTRL_GOTO_SOFT_RESET_EXIT) { goto soft_reset_exit; } #if MICROPY_ENABLE_COMPILER // Main script is finished, so now go into REPL mode. // The REPL mode can change, or it can request a soft reset. for (;;) { if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) { if (pyexec_raw_repl() != 0) { break; } } else { if (pyexec_friendly_repl() != 0) { break; } } } #endif soft_reset_exit: // soft reset MICROPY_BOARD_START_SOFT_RESET(&state); #if MICROPY_HW_ENABLE_STORAGE if (state.log_soft_reset) { mp_printf(&mp_plat_print, "MPY: sync filesystems\n"); } storage_flush(); #endif if (state.log_soft_reset) { mp_printf(&mp_plat_print, "MPY: soft reboot\n"); } #if MICROPY_PY_BLUETOOTH mp_bluetooth_deinit(); #endif #if MICROPY_PY_NETWORK mod_network_deinit(); #endif soft_timer_deinit(); timer_deinit(); uart_deinit_all(); #if MICROPY_HW_ENABLE_CAN can_deinit_all(); #endif machine_deinit(); #if MICROPY_PY_THREAD pyb_thread_deinit(); #endif MICROPY_BOARD_END_SOFT_RESET(&state); gc_sweep_all(); mp_deinit(); goto soft_reset; }