/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * SPDX-FileCopyrightText: Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include "py/gc.h" #include "py/mpstate.h" #include "py/qstr.h" #include "py/gc.h" #include "supervisor/linker.h" // NOTE: we are using linear arrays to store and search for qstr's (unique strings, interned strings) // ultimately we will replace this with a static hash table of some kind #if MICROPY_DEBUG_VERBOSE // print debugging info #define DEBUG_printf DEBUG_printf #else // don't print debugging info #define DEBUG_printf(...) (void)0 #endif // A qstr is an index into the qstr pool. // The data for a qstr is \0 terminated (so they can be printed using printf) #define Q_HASH_MASK ((1 << (8 * MICROPY_QSTR_BYTES_IN_HASH)) - 1) #if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL #define QSTR_ENTER() mp_thread_mutex_lock(&MP_STATE_VM(qstr_mutex), 1) #define QSTR_EXIT() mp_thread_mutex_unlock(&MP_STATE_VM(qstr_mutex)) #else #define QSTR_ENTER() #define QSTR_EXIT() #endif // this must match the equivalent function in makeqstrdata.py mp_uint_t qstr_compute_hash(const byte *data, size_t len) { // djb2 algorithm; see http://www.cse.yorku.ca/~oz/hash.html mp_uint_t hash = 5381; for (const byte *top = data + len; data < top; data++) { hash = ((hash << 5) + hash) ^ (*data); // hash * 33 ^ data } hash &= Q_HASH_MASK; // Make sure that valid hash is never zero, zero means "hash not computed" if (hash == 0) { hash++; } return hash; } const qstr_attr_t mp_qstr_const_attr[] = { #ifndef NO_QSTR #define QDEF(id, hash, len, str) { hash, len }, #define TRANSLATION(id, length, compressed ...) #include "genhdr/qstrdefs.generated.h" #undef TRANSLATION #undef QDEF #endif }; const qstr_pool_t mp_qstr_const_pool = { NULL, // no previous pool 0, // no previous pool 10, // set so that the first dynamically allocated pool is twice this size; must be <= the len (just below) MP_QSTRnumber_of, // corresponds to number of strings in array just below (qstr_attr_t *)mp_qstr_const_attr, { #ifndef NO_QSTR #define QDEF(id, hash, len, str) str, #define TRANSLATION(id, length, compressed ...) #include "genhdr/qstrdefs.generated.h" #undef TRANSLATION #undef QDEF #endif }, }; #ifdef MICROPY_QSTR_EXTRA_POOL extern const qstr_pool_t MICROPY_QSTR_EXTRA_POOL; #define CONST_POOL MICROPY_QSTR_EXTRA_POOL #else #define CONST_POOL mp_qstr_const_pool #endif void qstr_init(void) { MP_STATE_VM(last_pool) = (qstr_pool_t *)&CONST_POOL; // we won't modify the const_pool since it has no allocated room left MP_STATE_VM(qstr_last_chunk) = NULL; #if MICROPY_PY_THREAD mp_thread_mutex_init(&MP_STATE_VM(qstr_mutex)); #endif } STATIC const char *find_qstr(qstr q, qstr_attr_t *attr) { // search pool for this qstr // total_prev_len==0 in the final pool, so the loop will always terminate qstr_pool_t *pool = MP_STATE_VM(last_pool); while (q < pool->total_prev_len) { pool = pool->prev; } q -= pool->total_prev_len; assert(q < pool->len); *attr = pool->attrs[q]; return pool->qstrs[q]; } // qstr_mutex must be taken while in this function STATIC qstr qstr_add(mp_uint_t hash, mp_uint_t len, const char *q_ptr) { DEBUG_printf("QSTR: add hash=%d len=%d data=%.*s\n", hash, len, len, q_ptr); // make sure we have room in the pool for a new qstr if (MP_STATE_VM(last_pool)->len >= MP_STATE_VM(last_pool)->alloc) { uint32_t new_pool_length = MP_STATE_VM(last_pool)->alloc * 2; if (new_pool_length > MICROPY_QSTR_POOL_MAX_ENTRIES) { new_pool_length = MICROPY_QSTR_POOL_MAX_ENTRIES; } mp_uint_t pool_size = sizeof(qstr_pool_t) + sizeof(const char *) * new_pool_length; void *chunk = m_malloc_maybe(pool_size + sizeof(qstr_attr_t) * new_pool_length, true); if (chunk == NULL) { QSTR_EXIT(); m_malloc_fail(new_pool_length); } qstr_pool_t *pool = (qstr_pool_t *)chunk; pool->attrs = (qstr_attr_t *)(void *)((char *)chunk + pool_size); pool->prev = MP_STATE_VM(last_pool); pool->total_prev_len = MP_STATE_VM(last_pool)->total_prev_len + MP_STATE_VM(last_pool)->len; pool->alloc = new_pool_length; pool->len = 0; MP_STATE_VM(last_pool) = pool; DEBUG_printf("QSTR: allocate new pool of size %d\n", MP_STATE_VM(last_pool)->alloc); } // add the new qstr mp_uint_t at = MP_STATE_VM(last_pool)->len; MP_STATE_VM(last_pool)->attrs[at].hash = hash; MP_STATE_VM(last_pool)->attrs[at].len = len; MP_STATE_VM(last_pool)->qstrs[at] = q_ptr; MP_STATE_VM(last_pool)->len++; // return id for the newly-added qstr return MP_STATE_VM(last_pool)->total_prev_len + at; } qstr qstr_find_strn(const char *str, size_t str_len) { // work out hash of str mp_uint_t str_hash = qstr_compute_hash((const byte *)str, str_len); // search pools for the data for (qstr_pool_t *pool = MP_STATE_VM(last_pool); pool != NULL; pool = pool->prev) { qstr_attr_t *attrs = pool->attrs; for (mp_uint_t at = 0, top = pool->len; at < top; at++) { if (attrs[at].hash == str_hash && attrs[at].len == str_len && memcmp(pool->qstrs[at], str, str_len) == 0) { return pool->total_prev_len + at; } } } // not found; return null qstr return 0; } qstr qstr_from_str(const char *str) { return qstr_from_strn(str, strlen(str)); } qstr qstr_from_strn(const char *str, size_t len) { assert(len < (1 << (8 * MICROPY_QSTR_BYTES_IN_LEN))); QSTR_ENTER(); qstr q = qstr_find_strn(str, len); if (q == 0) { // qstr does not exist in interned pool so need to add it // compute number of bytes needed to intern this string size_t n_bytes = len + 1; if (MP_STATE_VM(qstr_last_chunk) != NULL && MP_STATE_VM(qstr_last_used) + n_bytes > MP_STATE_VM(qstr_last_alloc)) { // not enough room at end of previously interned string so try to grow char *new_p = m_renew_maybe(char, MP_STATE_VM(qstr_last_chunk), MP_STATE_VM(qstr_last_alloc), MP_STATE_VM(qstr_last_alloc) + n_bytes, false); if (new_p == NULL) { // could not grow existing memory; shrink it to fit previous (void)m_renew_maybe(char, MP_STATE_VM(qstr_last_chunk), MP_STATE_VM(qstr_last_alloc), MP_STATE_VM(qstr_last_used), false); MP_STATE_VM(qstr_last_chunk) = NULL; } else { // could grow existing memory MP_STATE_VM(qstr_last_alloc) += n_bytes; } } if (MP_STATE_VM(qstr_last_chunk) == NULL) { // no existing memory for the interned string so allocate a new chunk size_t al = n_bytes; if (al < MICROPY_ALLOC_QSTR_CHUNK_INIT) { al = MICROPY_ALLOC_QSTR_CHUNK_INIT; } MP_STATE_VM(qstr_last_chunk) = m_new_ll_maybe(char, al); if (MP_STATE_VM(qstr_last_chunk) == NULL) { // failed to allocate a large chunk so try with exact size MP_STATE_VM(qstr_last_chunk) = m_new_ll_maybe(char, n_bytes); if (MP_STATE_VM(qstr_last_chunk) == NULL) { QSTR_EXIT(); m_malloc_fail(n_bytes); } al = n_bytes; } MP_STATE_VM(qstr_last_alloc) = al; MP_STATE_VM(qstr_last_used) = 0; } // allocate memory from the chunk for this new interned string's data char *q_ptr = MP_STATE_VM(qstr_last_chunk) + MP_STATE_VM(qstr_last_used); MP_STATE_VM(qstr_last_used) += n_bytes; // store the interned strings' data mp_uint_t hash = qstr_compute_hash((const byte *)str, len); memcpy(q_ptr, str, len); q_ptr[len] = '\0'; q = qstr_add(hash, len, q_ptr); } QSTR_EXIT(); return q; } mp_uint_t PLACE_IN_ITCM(qstr_hash)(qstr q) { qstr_attr_t attr; find_qstr(q, &attr); return attr.hash; } size_t qstr_len(qstr q) { qstr_attr_t attr; find_qstr(q, &attr); return attr.len; } const char *qstr_str(qstr q) { qstr_attr_t attr; return find_qstr(q, &attr); } const byte *qstr_data(qstr q, size_t *len) { qstr_attr_t attr; const char *qd = find_qstr(q, &attr); *len = attr.len; return (byte *)qd; } void qstr_pool_info(size_t *n_pool, size_t *n_qstr, size_t *n_str_data_bytes, size_t *n_total_bytes) { QSTR_ENTER(); *n_pool = 0; *n_qstr = 0; *n_str_data_bytes = 0; *n_total_bytes = 0; for (qstr_pool_t *pool = MP_STATE_VM(last_pool); pool != NULL && pool != &CONST_POOL; pool = pool->prev) { *n_pool += 1; *n_qstr += pool->len; for (const qstr_attr_t *q = pool->attrs, *q_top = pool->attrs + pool->len; q < q_top; q++) { *n_str_data_bytes += sizeof(*q) + q->len + 1; } #if MICROPY_ENABLE_GC // this counts actual bytes used in heap *n_total_bytes += gc_nbytes(pool) - sizeof(qstr_attr_t) * pool->alloc; #else *n_total_bytes += sizeof(qstr_pool_t) + sizeof(const char *) * pool->alloc; #endif } *n_total_bytes += *n_str_data_bytes; QSTR_EXIT(); } #if MICROPY_PY_MICROPYTHON_MEM_INFO void qstr_dump_data(void) { QSTR_ENTER(); for (qstr_pool_t *pool = MP_STATE_VM(last_pool); pool != NULL && pool != &CONST_POOL; pool = pool->prev) { for (const char **q = pool->qstrs, **q_top = pool->qstrs + pool->len; q < q_top; q++) { mp_printf(&mp_plat_print, "Q(%s)\n", *q); } } QSTR_EXIT(); } #endif