/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "py/mperrno.h" #include "py/mphal.h" #include "shared-bindings/busio/I2C.h" #include "py/runtime.h" #include "shared-bindings/microcontroller/__init__.h" #include "shared-bindings/microcontroller/Pin.h" #include "peripherals/broadcom/cpu.h" #include "peripherals/broadcom/vcmailbox.h" #if BCM_VERSION == 2711 #define NUM_I2C (8) STATIC BSC0_Type *i2c[NUM_I2C] = {BSC0, BSC1, NULL, BSC3, BSC4, BSC5, BSC6, NULL}; #else #define NUM_I2C (3) STATIC BSC0_Type *i2c[NUM_I2C] = {BSC0, BSC1, NULL}; #endif STATIC bool never_reset_i2c[NUM_I2C]; STATIC bool i2c_in_use[NUM_I2C]; void reset_i2c(void) { // BSC2 is dedicated to the first HDMI output. never_reset_i2c[2] = true; i2c_in_use[2] = true; #if BCM_VERSION == 2711 // BSC7 is dedicated to the second HDMI output. never_reset_i2c[7] = true; i2c_in_use[7] = true; #endif for (size_t i = 0; i < NUM_I2C; i++) { if (never_reset_i2c[i]) { continue; } i2c_in_use[i] = false; i2c[i]->C_b.I2CEN = false; COMPLETE_MEMORY_READS; } } void common_hal_busio_i2c_construct(busio_i2c_obj_t *self, const mcu_pin_obj_t *scl, const mcu_pin_obj_t *sda, uint32_t frequency, uint32_t timeout) { size_t instance_index = NUM_I2C; uint8_t scl_alt = 0; uint8_t sda_alt = 0; for (scl_alt = 0; scl_alt < 6; scl_alt++) { if (scl->functions[scl_alt].type != PIN_FUNCTION_I2C || i2c_in_use[scl->functions[scl_alt].index] || scl->functions[scl_alt].function != I2C_FUNCTION_SCL) { continue; } for (sda_alt = 0; sda_alt < 6; sda_alt++) { if (sda->functions[sda_alt].type != PIN_FUNCTION_I2C || scl->functions[scl_alt].index != sda->functions[sda_alt].index || sda->functions[sda_alt].function != I2C_FUNCTION_SDA) { continue; } instance_index = scl->functions[scl_alt].index; break; } if (instance_index != NUM_I2C) { break; } } if (instance_index == NUM_I2C) { mp_raise_ValueError(translate("Invalid pins")); } i2c_in_use[instance_index] = true; self->index = instance_index; self->peripheral = i2c[self->index]; self->sda_pin = sda; self->scl_pin = scl; uint32_t source_clock = vcmailbox_get_clock_rate_measured(VCMAILBOX_CLOCK_CORE); uint16_t clock_divider = source_clock / frequency; self->peripheral->DIV_b.CDIV = clock_divider; gpio_set_function(sda->number, FSEL_VALUES[sda_alt]); gpio_set_function(scl->number, FSEL_VALUES[scl_alt]); } bool common_hal_busio_i2c_deinited(busio_i2c_obj_t *self) { return self->sda_pin == NULL; } void common_hal_busio_i2c_deinit(busio_i2c_obj_t *self) { if (common_hal_busio_i2c_deinited(self)) { return; } never_reset_i2c[self->index] = false; i2c_in_use[self->index] = false; common_hal_reset_pin(self->sda_pin); common_hal_reset_pin(self->scl_pin); self->sda_pin = NULL; self->scl_pin = NULL; } bool common_hal_busio_i2c_probe(busio_i2c_obj_t *self, uint8_t addr) { uint8_t result = common_hal_busio_i2c_write(self, addr, NULL, 0, true); return result == 0; } bool common_hal_busio_i2c_try_lock(busio_i2c_obj_t *self) { bool grabbed_lock = false; if (!self->has_lock) { grabbed_lock = true; self->has_lock = true; } return grabbed_lock; } bool common_hal_busio_i2c_has_lock(busio_i2c_obj_t *self) { return self->has_lock; } void common_hal_busio_i2c_unlock(busio_i2c_obj_t *self) { self->has_lock = false; } // Discussion of I2C implementation is here: https://github.com/raspberrypi/linux/issues/254 uint8_t common_hal_busio_i2c_write(busio_i2c_obj_t *self, uint16_t addr, const uint8_t *data, size_t len, bool transmit_stop_bit) { COMPLETE_MEMORY_READS; self->peripheral->S_b.DONE = true; self->peripheral->A_b.ADDR = addr; size_t loop_len = len; // Prevent the stop bit by transmitting everything but the last byte. Doing // so is left up to the subsequent read. if (!transmit_stop_bit) { loop_len -= 1; } self->peripheral->DLEN_b.DLEN = len; self->peripheral->C = BSC0_C_ST_Msk | BSC0_C_I2CEN_Msk; // Wait for the transaction to start. while (self->peripheral->S_b.TA == 0) { RUN_BACKGROUND_TASKS; } for (size_t i = 0; i < loop_len; i++) { if (self->peripheral->S_b.ERR) { break; } self->peripheral->FIFO_b.DATA = data[i]; // Wait for the FIFO to empty enough that we can write more data. while (self->peripheral->S_b.TXE == 0) { RUN_BACKGROUND_TASKS; } } // Wait for the FIFO to empty completely, not DONE, because we may not complete the // transaction with a write. while (self->peripheral->S_b.ERR == 0 && ((!transmit_stop_bit && self->peripheral->S_b.TXE == 0) || (transmit_stop_bit && self->peripheral->S_b.TA == 1))) { RUN_BACKGROUND_TASKS; } self->finish_write = false; if (self->peripheral->S_b.ERR) { // Wait for the transfer to finish. while (self->peripheral->S_b.TA == 1) { RUN_BACKGROUND_TASKS; } // Clear the flag by writing it and wait for it to clear. self->peripheral->S_b.ERR = true; while (self->peripheral->S_b.ERR == 1) { RUN_BACKGROUND_TASKS; } return MP_ENODEV; } if (loop_len < len) { self->finish_write = true; self->last_write_data = data[len - 1]; } return 0; } uint8_t common_hal_busio_i2c_read(busio_i2c_obj_t *self, uint16_t addr, uint8_t *data, size_t len) { COMPLETE_MEMORY_READS; self->peripheral->A_b.ADDR = addr; if (self->finish_write) { self->finish_write = false; if (self->peripheral->S_b.ERR == 1) { return MP_ENODEV; } self->peripheral->FIFO_b.DATA = self->last_write_data; } else { self->peripheral->S_b.DONE = true; } self->peripheral->DLEN_b.DLEN = len; self->peripheral->C = BSC0_C_READ_Msk | BSC0_C_ST_Msk | BSC0_C_I2CEN_Msk; // Wait for the transaction to start. while (self->peripheral->S_b.TA == 0) { RUN_BACKGROUND_TASKS; } for (size_t i = 0; i < len; i++) { if (self->peripheral->S_b.ERR) { break; } // Wait for the FIFO to have enough data that we can read it. RXR is low // once the transaction is done so we check the done bit too. while (!self->peripheral->S_b.RXR && !self->peripheral->S_b.DONE) { RUN_BACKGROUND_TASKS; } data[i] = self->peripheral->FIFO_b.DATA; } // Wait for the transaction to finish. while (!self->peripheral->S_b.DONE && !self->peripheral->S_b.ERR) { RUN_BACKGROUND_TASKS; } if (self->peripheral->S_b.ERR) { self->peripheral->S_b.ERR = true; while (self->peripheral->S_b.ERR == 1) { RUN_BACKGROUND_TASKS; } return MP_ENODEV; } return 0; } void common_hal_busio_i2c_never_reset(busio_i2c_obj_t *self) { never_reset_i2c[self->index] = true; common_hal_never_reset_pin(self->scl_pin); common_hal_never_reset_pin(self->sda_pin); }