/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2021 Artyom Skrobov * Copyright (c) 2023 Jeff Epler for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "shared-module/synthio/__init__.h" #include "shared-bindings/synthio/__init__.h" #include "shared-module/synthio/Note.h" #include "py/runtime.h" #include #include STATIC const int16_t square_wave[] = {-32768, 32767}; STATIC const uint16_t notes[] = {8372, 8870, 9397, 9956, 10548, 11175, 11840, 12544, 13290, 14080, 14917, 15804}; // 9th octave STATIC int32_t round_float_to_int(mp_float_t f) { return (int32_t)(f + MICROPY_FLOAT_CONST(0.5)); } STATIC int64_t round_float_to_int64(mp_float_t f) { return (int64_t)(f + MICROPY_FLOAT_CONST(0.5)); } mp_float_t common_hal_synthio_midi_to_hz_float(mp_float_t arg) { return common_hal_synthio_onevo_to_hz_float(arg / 12.); } mp_float_t common_hal_synthio_onevo_to_hz_float(mp_float_t octave) { return notes[0] * MICROPY_FLOAT_C_FUN(pow)(2., octave - 10); } STATIC int16_t convert_time_to_rate(uint32_t sample_rate, mp_obj_t time_in, int16_t difference) { mp_float_t time = mp_obj_get_float(time_in); int num_samples = (int)MICROPY_FLOAT_C_FUN(round)(time * sample_rate); if (num_samples == 0) { return 32767; } int16_t result = MIN(32767, MAX(1, abs(difference * SYNTHIO_MAX_DUR) / num_samples)); return (difference < 0) ? -result : result; } void synthio_envelope_definition_set(synthio_envelope_definition_t *envelope, mp_obj_t obj, uint32_t sample_rate) { if (obj == mp_const_none) { envelope->attack_level = 32767; envelope->sustain_level = 32767; envelope->attack_step = 32767; envelope->decay_step = -32767; envelope->release_step = -32767; return; } mp_arg_validate_type(obj, (mp_obj_type_t *)&synthio_envelope_type_obj, MP_QSTR_envelope); size_t len; mp_obj_t *fields; mp_obj_tuple_get(obj, &len, &fields); envelope->attack_level = (int)(32767 * mp_obj_get_float(fields[3])); envelope->sustain_level = (int)(32767 * mp_obj_get_float(fields[4]) * mp_obj_get_float(fields[3])); envelope->attack_step = convert_time_to_rate( sample_rate, fields[0], envelope->attack_level); envelope->decay_step = -convert_time_to_rate( sample_rate, fields[1], envelope->attack_level - envelope->sustain_level); envelope->release_step = -convert_time_to_rate( sample_rate, fields[2], envelope->sustain_level ? envelope->sustain_level : envelope->attack_level); } STATIC void synthio_envelope_state_step(synthio_envelope_state_t *state, synthio_envelope_definition_t *def, size_t n_steps) { state->substep += n_steps; while (state->substep >= SYNTHIO_MAX_DUR) { // max n_steps should be SYNTHIO_MAX_DUR so this loop executes at most // once state->substep -= SYNTHIO_MAX_DUR; switch (state->state) { case SYNTHIO_ENVELOPE_STATE_SUSTAIN: break; case SYNTHIO_ENVELOPE_STATE_ATTACK: state->level = MIN(state->level + def->attack_step, def->attack_level); if (state->level == def->attack_level) { state->state = SYNTHIO_ENVELOPE_STATE_DECAY; } break; case SYNTHIO_ENVELOPE_STATE_DECAY: state->level = MAX(state->level + def->decay_step, def->sustain_level); if (state->level == def->sustain_level) { state->state = SYNTHIO_ENVELOPE_STATE_SUSTAIN; } break; case SYNTHIO_ENVELOPE_STATE_RELEASE: state->level = MAX(state->level + def->release_step, 0); } } } STATIC void synthio_envelope_state_init(synthio_envelope_state_t *state, synthio_envelope_definition_t *def) { state->level = 0; state->substep = 0; state->state = SYNTHIO_ENVELOPE_STATE_ATTACK; synthio_envelope_state_step(state, def, SYNTHIO_MAX_DUR); } STATIC void synthio_envelope_state_release(synthio_envelope_state_t *state, synthio_envelope_definition_t *def) { state->state = SYNTHIO_ENVELOPE_STATE_RELEASE; } STATIC synthio_envelope_definition_t *synthio_synth_get_note_envelope(synthio_synth_t *synth, mp_obj_t note_obj) { synthio_envelope_definition_t *def = &synth->global_envelope_definition; if (!mp_obj_is_small_int(note_obj)) { synthio_note_obj_t *note = MP_OBJ_TO_PTR(note_obj); if (note->envelope_obj != mp_const_none) { def = ¬e->envelope_def; } } return def; } #define RANGE_LOW (-28000) #define RANGE_HIGH (28000) #define RANGE_SHIFT (16) #define RANGE_SCALE (0xfffffff / (32768 * CIRCUITPY_SYNTHIO_MAX_CHANNELS - RANGE_HIGH)) // dynamic range compression via a downward compressor with hard knee // // When the output value is within the range +-28000 (about 85% of full scale), // it is unchanged. Otherwise, it undergoes a gain reduction so that the // largest possible values, (+32768,-32767) * CIRCUITPY_SYNTHIO_MAX_CHANNELS, // still fit within the output range // // This produces a much louder overall volume with multiple voices, without // much additional processing. // // https://en.wikipedia.org/wiki/Dynamic_range_compression STATIC int16_t mix_down_sample(int32_t sample) { if (sample < RANGE_LOW) { sample = (((sample - RANGE_LOW) * RANGE_SCALE) >> RANGE_SHIFT) + RANGE_LOW; } else if (sample > RANGE_HIGH) { sample = (((sample - RANGE_HIGH) * RANGE_SCALE) >> RANGE_SHIFT) + RANGE_HIGH; } return sample; } void synthio_synth_synthesize(synthio_synth_t *synth, uint8_t **bufptr, uint32_t *buffer_length, uint8_t channel) { if (channel == synth->other_channel) { *buffer_length = synth->last_buffer_length; *bufptr = (uint8_t *)(synth->buffers[synth->other_buffer_index] + channel); return; } synth->buffer_index = !synth->buffer_index; synth->other_channel = 1 - channel; synth->other_buffer_index = synth->buffer_index; uint16_t dur = MIN(SYNTHIO_MAX_DUR, synth->span.dur); synth->span.dur -= dur; int32_t sample_rate = synth->sample_rate; int32_t out_buffer32[dur * synth->channel_count]; memset(out_buffer32, 0, sizeof(out_buffer32)); for (int chan = 0; chan < CIRCUITPY_SYNTHIO_MAX_CHANNELS; chan++) { mp_obj_t note_obj = synth->span.note_obj[chan]; if (note_obj == SYNTHIO_SILENCE) { synth->accum[chan] = 0; continue; } if (synth->envelope_state[chan].level == 0) { // note is truly finished, but we only just noticed synth->span.note_obj[chan] = SYNTHIO_SILENCE; continue; } // adjust loudness by envelope uint16_t loudness[2] = {synth->envelope_state[chan].level,synth->envelope_state[chan].level}; uint32_t dds_rate; const int16_t *waveform = synth->waveform; uint32_t waveform_length = synth->waveform_length; uint32_t ring_dds_rate = 0; const int16_t *ring_waveform = NULL; uint32_t ring_waveform_length = 0; if (mp_obj_is_small_int(note_obj)) { uint8_t note = mp_obj_get_int(note_obj); uint8_t octave = note / 12; uint16_t base_freq = notes[note % 12]; // rate = base_freq * waveform_length // den = sample_rate * 2 ^ (10 - octave) // den = sample_rate * 2 ^ 10 / 2^octave // dds_rate = 2^SHIFT * rate / den // dds_rate = 2^(SHIFT-10+octave) * base_freq * waveform_length / sample_rate dds_rate = (sample_rate / 2 + ((uint64_t)(base_freq * waveform_length) << (SYNTHIO_FREQUENCY_SHIFT - 10 + octave))) / sample_rate; } else { synthio_note_obj_t *note = MP_OBJ_TO_PTR(note_obj); int32_t frequency_scaled = synthio_note_step(note, sample_rate, dur, loudness); if (note->waveform_buf.buf) { waveform = note->waveform_buf.buf; waveform_length = note->waveform_buf.len / 2; } dds_rate = synthio_frequency_convert_scaled_to_dds((uint64_t)frequency_scaled * waveform_length, sample_rate); if (note->ring_frequency_scaled != 0 && note->ring_waveform_buf.buf) { ring_waveform = note->ring_waveform_buf.buf; ring_waveform_length = note->ring_waveform_buf.len / 2; ring_dds_rate = synthio_frequency_convert_scaled_to_dds((uint64_t)note->ring_frequency_scaled * ring_waveform_length, sample_rate); uint32_t lim = ring_waveform_length << SYNTHIO_FREQUENCY_SHIFT; if (ring_dds_rate > lim / 2) { ring_dds_rate = 0; // can't ring at that frequency } } } int synth_chan = synth->channel_count; if (ring_dds_rate) { uint32_t lim = waveform_length << SYNTHIO_FREQUENCY_SHIFT; uint32_t accum = synth->accum[chan]; if (dds_rate > lim / 2) { // beyond nyquist, can't play note continue; } // can happen if note waveform gets set mid-note, but the expensive modulo is usually avoided if (accum > lim) { accum %= lim; } int32_t ring_buffer[dur]; // first, fill with waveform for (uint16_t i = 0; i < dur; i++) { accum += dds_rate; // because dds_rate is low enough, the subtraction is guaranteed to go back into range, no expensive modulo needed if (accum > lim) { accum -= lim; } int16_t idx = accum >> SYNTHIO_FREQUENCY_SHIFT; ring_buffer[i] = waveform[idx]; } synth->accum[chan] = accum; // now modulate by ring and accumulate accum = synth->ring_accum[chan]; lim = ring_waveform_length << SYNTHIO_FREQUENCY_SHIFT; // can happen if note waveform gets set mid-note, but the expensive modulo is usually avoided if (accum > lim) { accum %= lim; } for (uint16_t i = 0, j = 0; i < dur; i++) { accum += ring_dds_rate; // because dds_rate is low enough, the subtraction is guaranteed to go back into range, no expensive modulo needed if (accum > lim) { accum -= lim; } int16_t idx = accum >> SYNTHIO_FREQUENCY_SHIFT; int16_t wi = (ring_waveform[idx] * ring_buffer[i]) / 32768; for (int c = 0; c < synth_chan; c++) { out_buffer32[j] += (wi * loudness[c]) / 32768; j++; } } synth->ring_accum[chan] = accum; } else { uint32_t lim = waveform_length << SYNTHIO_FREQUENCY_SHIFT; uint32_t accum = synth->accum[chan]; if (dds_rate > lim / 2) { // beyond nyquist, can't play note continue; } // can happen if note waveform gets set mid-note, but the expensive modulo is usually avoided if (accum > lim) { accum %= lim; } for (uint16_t i = 0, j = 0; i < dur; i++) { accum += dds_rate; // because dds_rate is low enough, the subtraction is guaranteed to go back into range, no expensive modulo needed if (accum > lim) { accum -= lim; } int16_t idx = accum >> SYNTHIO_FREQUENCY_SHIFT; int16_t wi = waveform[idx]; for (int c = 0; c < synth_chan; c++) { out_buffer32[j] += (wi * loudness[c]) / 65536; j++; } } synth->accum[chan] = accum; } } int16_t *out_buffer16 = (int16_t *)(void *)synth->buffers[synth->buffer_index]; // mix down audio for (size_t i = 0; i < MP_ARRAY_SIZE(out_buffer32); i++) { int32_t sample = out_buffer32[i]; out_buffer16[i] = mix_down_sample(sample); } // advance envelope states for (int chan = 0; chan < CIRCUITPY_SYNTHIO_MAX_CHANNELS; chan++) { mp_obj_t note_obj = synth->span.note_obj[chan]; if (note_obj == SYNTHIO_SILENCE) { continue; } synthio_envelope_state_step(&synth->envelope_state[chan], synthio_synth_get_note_envelope(synth, note_obj), dur); } *buffer_length = synth->last_buffer_length = dur * SYNTHIO_BYTES_PER_SAMPLE * synth->channel_count; *bufptr = (uint8_t *)out_buffer16; } void synthio_synth_reset_buffer(synthio_synth_t *synth, bool single_channel_output, uint8_t channel) { if (single_channel_output && channel == 1) { return; } synth->other_channel = -1; } bool synthio_synth_deinited(synthio_synth_t *synth) { return synth->buffers[0] == NULL; } void synthio_synth_deinit(synthio_synth_t *synth) { m_del(uint8_t, synth->buffers[0], synth->buffer_length); m_del(uint8_t, synth->buffers[1], synth->buffer_length); synth->buffers[0] = NULL; synth->buffers[1] = NULL; } void synthio_synth_envelope_set(synthio_synth_t *synth, mp_obj_t envelope_obj) { synthio_envelope_definition_set(&synth->global_envelope_definition, envelope_obj, synth->sample_rate); synth->envelope_obj = envelope_obj; } mp_obj_t synthio_synth_envelope_get(synthio_synth_t *synth) { return synth->envelope_obj; } void synthio_synth_init(synthio_synth_t *synth, uint32_t sample_rate, int channel_count, const int16_t *waveform, uint16_t waveform_length, mp_obj_t envelope_obj) { mp_arg_validate_int_range(channel_count, 1, 2, MP_QSTR_channel_count); synth->buffer_length = SYNTHIO_MAX_DUR * SYNTHIO_BYTES_PER_SAMPLE * channel_count; synth->buffers[0] = m_malloc(synth->buffer_length, false); synth->buffers[1] = m_malloc(synth->buffer_length, false); synth->channel_count = channel_count; synth->other_channel = -1; synth->waveform = waveform; synth->waveform_length = waveform_length; synth->sample_rate = sample_rate; synthio_synth_envelope_set(synth, envelope_obj); for (size_t i = 0; i < CIRCUITPY_SYNTHIO_MAX_CHANNELS; i++) { synth->span.note_obj[i] = SYNTHIO_SILENCE; } } void synthio_synth_get_buffer_structure(synthio_synth_t *synth, bool single_channel_output, bool *single_buffer, bool *samples_signed, uint32_t *max_buffer_length, uint8_t *spacing) { *single_buffer = false; *samples_signed = true; *max_buffer_length = synth->buffer_length; if (single_channel_output) { *spacing = synth->channel_count; } else { *spacing = 1; } } STATIC bool parse_common(mp_buffer_info_t *bufinfo, mp_obj_t o, int16_t what) { if (o != mp_const_none) { mp_get_buffer_raise(o, bufinfo, MP_BUFFER_READ); if (bufinfo->typecode != 'h') { mp_raise_ValueError_varg(translate("%q must be array of type 'h'"), what); } mp_arg_validate_length_range(bufinfo->len / 2, 2, 1024, what); return true; } return false; } void synthio_synth_parse_waveform(mp_buffer_info_t *bufinfo_waveform, mp_obj_t waveform_obj) { *bufinfo_waveform = ((mp_buffer_info_t) { .buf = (void *)square_wave, .len = 4 }); parse_common(bufinfo_waveform, waveform_obj, MP_QSTR_waveform); } STATIC int find_channel_with_note(synthio_synth_t *synth, mp_obj_t note) { for (int i = 0; i < CIRCUITPY_SYNTHIO_MAX_CHANNELS; i++) { if (synth->span.note_obj[i] == note) { return i; } } int result = -1; if (note == SYNTHIO_SILENCE) { // replace the releasing note with lowest volume level int level = 32768; for (int chan = 0; chan < CIRCUITPY_SYNTHIO_MAX_CHANNELS; chan++) { if (!SYNTHIO_NOTE_IS_PLAYING(synth, chan)) { synthio_envelope_state_t *state = &synth->envelope_state[chan]; if (state->level < level) { result = chan; level = state->level; } } } } return result; } bool synthio_span_change_note(synthio_synth_t *synth, mp_obj_t old_note, mp_obj_t new_note) { int channel; if (new_note != SYNTHIO_SILENCE && (channel = find_channel_with_note(synth, new_note)) != -1) { // note already playing, re-enter attack phase synth->envelope_state[channel].state = SYNTHIO_ENVELOPE_STATE_ATTACK; return true; } channel = find_channel_with_note(synth, old_note); if (channel != -1) { if (new_note == SYNTHIO_SILENCE) { synthio_envelope_state_release(&synth->envelope_state[channel], synthio_synth_get_note_envelope(synth, old_note)); } else { synth->span.note_obj[channel] = new_note; synthio_envelope_state_init(&synth->envelope_state[channel], synthio_synth_get_note_envelope(synth, new_note)); synth->accum[channel] = 0; } return true; } return false; } uint64_t synthio_frequency_convert_float_to_scaled(mp_float_t val) { return round_float_to_int64(val * (1 << SYNTHIO_FREQUENCY_SHIFT)); } uint32_t synthio_frequency_convert_float_to_dds(mp_float_t frequency_hz, int32_t sample_rate) { return synthio_frequency_convert_scaled_to_dds(synthio_frequency_convert_float_to_scaled(frequency_hz), sample_rate); } uint32_t synthio_frequency_convert_scaled_to_dds(uint64_t frequency_scaled, int32_t sample_rate) { return (sample_rate / 2 + frequency_scaled) / sample_rate; } void synthio_lfo_set(synthio_lfo_state_t *state, const synthio_lfo_descr_t *descr, uint32_t sample_rate) { state->amplitude_scaled = round_float_to_int(descr->amplitude * 32768); state->dds = synthio_frequency_convert_float_to_dds(descr->frequency * 65536, sample_rate); } STATIC int synthio_lfo_step_common(synthio_lfo_state_t *state, uint16_t dur) { uint32_t phase = state->phase; uint16_t whole_phase = phase >> 16; // advance the phase accumulator state->phase = phase + state->dds * dur; return whole_phase; } STATIC int synthio_lfo_sweep_common(synthio_lfo_state_t *state, uint16_t dur) { uint16_t whole_phase = synthio_lfo_step_common(state, dur); if (state->phase < state->dds) { state->phase = 0xffffffff; } return whole_phase; } int synthio_sweep_step(synthio_lfo_state_t *state, uint16_t dur) { uint16_t whole_phase = synthio_lfo_sweep_common(state, dur); return (state->amplitude_scaled * whole_phase) / 65536 + state->offset_scaled; } int synthio_sweep_in_step(synthio_lfo_state_t *state, uint16_t dur) { uint16_t whole_phase = 65535 - synthio_lfo_sweep_common(state, dur); return (state->amplitude_scaled * whole_phase) / 65536 + state->offset_scaled; } int synthio_lfo_step(synthio_lfo_state_t *state, uint16_t dur) { uint16_t whole_phase = synthio_lfo_step_common(state, dur); // create a triangle wave, it's quick and easy int v; if (whole_phase < 16384) { // ramp from 0 to amplitude v = (state->amplitude_scaled * whole_phase); } else if (whole_phase < 49152) { // ramp from +amplitude to -amplitude v = (state->amplitude_scaled * (32768 - whole_phase)); } else { // from -amplitude to 0 v = (state->amplitude_scaled * (whole_phase - 65536)); } return v / 16384 + state->offset_scaled; }