/* * This file is part of the MicroPython project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2016 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "py/nlr.h" #include "py/compile.h" #include "py/frozenmod.h" #include "py/mphal.h" #include "py/runtime.h" #include "py/repl.h" #include "py/gc.h" #include "py/stackctrl.h" #include "extmod/vfs_fat.h" #include "lib/oofatfs/ff.h" #include "lib/oofatfs/diskio.h" #include "lib/mp-readline/readline.h" #include "lib/utils/pyexec.h" #include "asf/common/services/sleepmgr/sleepmgr.h" #include "asf/common/services/usb/udc/udc.h" #include "asf/common2/services/delay/delay.h" #include "asf/sam0/drivers/nvm/nvm.h" #include "asf/sam0/drivers/port/port.h" #include "asf/sam0/drivers/sercom/usart/usart.h" #include "asf/sam0/drivers/system/system.h" #include #include "boards/board.h" #include "common-hal/analogio/AnalogIn.h" #include "common-hal/audioio/AudioOut.h" #include "common-hal/audiobusio/PDMIn.h" #include "common-hal/pulseio/PulseIn.h" #include "common-hal/pulseio/PulseOut.h" #include "common-hal/pulseio/PWMOut.h" #include "common-hal/usb_hid/__init__.h" #include "autoreload.h" #include "flash_api.h" #include "mpconfigboard.h" #include "rgb_led_status.h" #include "shared_dma.h" #include "tick.h" #ifdef EXPRESS_BOARD #include "common-hal/touchio/TouchIn.h" #define INTERNAL_CIRCUITPY_CONFIG_START_ADDR (0x00040000 - 0x100 - CIRCUITPY_INTERNAL_NVM_SIZE) #else #define INTERNAL_CIRCUITPY_CONFIG_START_ADDR (0x00040000 - 0x010000 - 0x100 - CIRCUITPY_INTERNAL_NVM_SIZE) #endif fs_user_mount_t fs_user_mount_flash; mp_vfs_mount_t mp_vfs_mount_flash; typedef enum { NO_SAFE_MODE = 0, BROWNOUT, HARD_CRASH, USER_SAFE_MODE, } safe_mode_t; void do_str(const char *src, mp_parse_input_kind_t input_kind) { mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, src, strlen(src), 0); if (lex == NULL) { printf("MemoryError: lexer could not allocate memory\n"); return; } nlr_buf_t nlr; if (nlr_push(&nlr) == 0) { qstr source_name = lex->source_name; mp_parse_tree_t parse_tree = mp_parse(lex, input_kind); mp_obj_t module_fun = mp_compile(&parse_tree, source_name, MP_EMIT_OPT_NONE, true); mp_call_function_0(module_fun); nlr_pop(); } else { // uncaught exception mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val); } } // we don't make this function static because it needs a lot of stack and we // want it to be executed without using stack within main() function void init_flash_fs(bool create_allowed) { // init the vfs object fs_user_mount_t *vfs_fat = &fs_user_mount_flash; vfs_fat->flags = 0; flash_init_vfs(vfs_fat); // try to mount the flash FRESULT res = f_mount(&vfs_fat->fatfs); if (res == FR_NO_FILESYSTEM && create_allowed) { // no filesystem so create a fresh one uint8_t working_buf[_MAX_SS]; res = f_mkfs(&vfs_fat->fatfs, FM_FAT, 0, working_buf, sizeof(working_buf)); // Flush the new file system to make sure its repaired immediately. flash_flush(); if (res != FR_OK) { return; } // set label f_setlabel(&vfs_fat->fatfs, "CIRCUITPY"); } else if (res != FR_OK) { return; } mp_vfs_mount_t *vfs = &mp_vfs_mount_flash; vfs->str = "/"; vfs->len = 1; vfs->obj = MP_OBJ_FROM_PTR(vfs_fat); vfs->next = NULL; MP_STATE_VM(vfs_mount_table) = vfs; // The current directory is used as the boot up directory. // It is set to the internal flash filesystem by default. MP_STATE_PORT(vfs_cur) = vfs; } static char heap[16384 + 4096]; void reset_mp(void) { reset_status_led(); new_status_color(0x8f008f); autoreload_stop(); // Sync the file systems in case any used RAM from the GC to cache. As soon // as we re-init the GC all bets are off on the cache. flash_flush(); // Clear the readline history. It references the heap we're about to destroy. readline_init0(); #if MICROPY_ENABLE_GC gc_init(heap, heap + sizeof(heap)); #endif mp_init(); mp_obj_list_init(mp_sys_path, 0); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script) mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_)); mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_lib)); // Frozen modules are in their own pseudo-dir, e.g., ".frozen". mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_FROZEN_FAKE_DIR_QSTR)); mp_obj_list_init(mp_sys_argv, 0); } extern volatile bool mp_msc_enabled; void reset_samd21(void) { // Reset all SERCOMs except the one being used by the SPI flash. Sercom *sercom_instances[SERCOM_INST_NUM] = SERCOM_INSTS; for (int i = 0; i < SERCOM_INST_NUM; i++) { #ifdef SPI_FLASH_SERCOM if (sercom_instances[i] == SPI_FLASH_SERCOM) { continue; } #endif #ifdef MICROPY_HW_APA102_SERCOM if (sercom_instances[i] == MICROPY_HW_APA102_SERCOM) { continue; } #endif sercom_instances[i]->SPI.CTRLA.bit.SWRST = 1; } #ifdef EXPRESS_BOARD audioout_reset(); touchin_reset(); pdmin_reset(); pulsein_reset(); pulseout_reset(); pwmout_reset(); #endif analogin_reset(); // Wait for the DAC to sync then reset. while (DAC->STATUS.reg & DAC_STATUS_SYNCBUSY) {} DAC->CTRLA.reg |= DAC_CTRLA_SWRST; reset_all_pins(); usb_hid_reset(); #ifdef CALIBRATE_CRYSTALLESS // If we are on USB lets double check our fine calibration for the clock and // save the new value if its different enough. if (mp_msc_enabled) { SYSCTRL->DFLLSYNC.bit.READREQ = 1; uint16_t saved_calibration = 0x1ff; if (strcmp((char*) INTERNAL_CIRCUITPY_CONFIG_START_ADDR, "CIRCUITPYTHON1") == 0) { saved_calibration = ((uint16_t *) INTERNAL_CIRCUITPY_CONFIG_START_ADDR)[8]; } while (SYSCTRL->PCLKSR.bit.DFLLRDY == 0) { // TODO(tannewt): Run the mass storage stuff if this takes a while. } int16_t current_calibration = SYSCTRL->DFLLVAL.bit.FINE; if (abs(current_calibration - saved_calibration) > 10) { enum status_code error_code; uint8_t page_buffer[NVMCTRL_ROW_SIZE]; for (int i = 0; i < NVMCTRL_ROW_PAGES; i++) { do { error_code = nvm_read_buffer(INTERNAL_CIRCUITPY_CONFIG_START_ADDR + i * NVMCTRL_PAGE_SIZE, page_buffer + i * NVMCTRL_PAGE_SIZE, NVMCTRL_PAGE_SIZE); } while (error_code == STATUS_BUSY); } // If this is the first write, include the header. if (strcmp((char*) page_buffer, "CIRCUITPYTHON1") != 0) { memcpy(page_buffer, "CIRCUITPYTHON1", 15); } // First 16 bytes (0-15) are ID. Little endian! page_buffer[16] = current_calibration & 0xff; page_buffer[17] = current_calibration >> 8; do { error_code = nvm_erase_row(INTERNAL_CIRCUITPY_CONFIG_START_ADDR); } while (error_code == STATUS_BUSY); for (int i = 0; i < NVMCTRL_ROW_PAGES; i++) { do { error_code = nvm_write_buffer(INTERNAL_CIRCUITPY_CONFIG_START_ADDR + i * NVMCTRL_PAGE_SIZE, page_buffer + i * NVMCTRL_PAGE_SIZE, NVMCTRL_PAGE_SIZE); } while (error_code == STATUS_BUSY); } } } #endif } bool maybe_run(const char* filename, pyexec_result_t* exec_result) { mp_import_stat_t stat = mp_import_stat(filename); if (stat != MP_IMPORT_STAT_FILE) { return false; } mp_hal_stdout_tx_str(filename); mp_hal_stdout_tx_str(" output:\r\n"); pyexec_file(filename, exec_result); return true; } bool start_mp(safe_mode_t safe_mode) { bool cdc_enabled_at_start = mp_cdc_enabled; #ifdef CIRCUITPY_AUTORELOAD_DELAY_MS if (cdc_enabled_at_start) { mp_hal_stdout_tx_str("\r\n"); if (autoreload_is_enabled()) { mp_hal_stdout_tx_str("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\r\n"); } else if (safe_mode != NO_SAFE_MODE) { mp_hal_stdout_tx_str("Running in safe mode! Auto-reload is off.\r\n"); } else if (!autoreload_is_enabled()) { mp_hal_stdout_tx_str("Auto-reload is off.\r\n"); } } #endif pyexec_result_t result; bool found_main = false; if (safe_mode != NO_SAFE_MODE) { mp_hal_stdout_tx_str("Running in safe mode! Not running saved code.\r\n"); } else { new_status_color(MAIN_RUNNING); found_main = maybe_run("code.txt", &result) || maybe_run("code.py", &result) || maybe_run("main.py", &result) || maybe_run("main.txt", &result); reset_status_led(); if (result.return_code & PYEXEC_FORCED_EXIT) { return reload_next_character; } // If not is USB mode then do not skip the repl. #ifndef USB_REPL return false; #endif } // Wait for connection or character. bool cdc_enabled_before = false; #if defined(MICROPY_HW_NEOPIXEL) || (defined(MICROPY_HW_APA102_MOSI) && defined(MICROPY_HW_APA102_SCK)) new_status_color(ALL_DONE); uint32_t pattern_start = ticks_ms; uint32_t total_exception_cycle = 0; uint8_t ones = result.exception_line % 10; ones += ones > 0 ? 1 : 0; uint8_t tens = (result.exception_line / 10) % 10; tens += tens > 0 ? 1 : 0; uint8_t hundreds = (result.exception_line / 100) % 10; hundreds += hundreds > 0 ? 1 : 0; uint8_t thousands = (result.exception_line / 1000) % 10; thousands += thousands > 0 ? 1 : 0; uint8_t digit_sum = ones + tens + hundreds + thousands; uint8_t num_places = 0; uint16_t line = result.exception_line; for (int i = 0; i < 4; i++) { if ((line % 10) > 0) { num_places++; } line /= 10; } if (result.return_code == PYEXEC_EXCEPTION) { total_exception_cycle = EXCEPTION_TYPE_LENGTH_MS * 3 + LINE_NUMBER_TOGGLE_LENGTH * digit_sum + LINE_NUMBER_TOGGLE_LENGTH * num_places; } #endif while (true) { #ifdef MICROPY_VM_HOOK_LOOP MICROPY_VM_HOOK_LOOP #endif if (reload_next_character) { return true; } if (usb_rx_count > 0) { // Skip REPL if reload was requested. return receive_usb() == CHAR_CTRL_D; } if (!cdc_enabled_before && mp_cdc_enabled) { if (cdc_enabled_at_start) { mp_hal_stdout_tx_str("\r\n\r\n"); } if (!cdc_enabled_at_start) { if (autoreload_is_enabled()) { mp_hal_stdout_tx_str("Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.\r\n"); } else { mp_hal_stdout_tx_str("Auto-reload is off.\r\n"); } } // Output a user safe mode string if its set. #ifdef BOARD_USER_SAFE_MODE if (safe_mode == USER_SAFE_MODE) { mp_hal_stdout_tx_str("\r\nYou requested starting safe mode by "); mp_hal_stdout_tx_str(BOARD_USER_SAFE_MODE); mp_hal_stdout_tx_str(".\r\nTo exit, please reset the board without "); mp_hal_stdout_tx_str(BOARD_USER_SAFE_MODE); mp_hal_stdout_tx_str(".\r\n"); } else #endif if (safe_mode != NO_SAFE_MODE) { mp_hal_stdout_tx_str("\r\nYou are running in safe mode which means something really bad happened.\r\n"); if (safe_mode == HARD_CRASH) { mp_hal_stdout_tx_str("Looks like our core CircuitPython code crashed hard. Whoops!\r\n"); mp_hal_stdout_tx_str("Please file an issue here with the contents of your CIRCUITPY drive:\r\n"); mp_hal_stdout_tx_str("https://github.com/adafruit/circuitpython/issues\r\n"); } else if (safe_mode == BROWNOUT) { mp_hal_stdout_tx_str("The microcontroller's power dipped. Please make sure your power supply provides \r\n"); mp_hal_stdout_tx_str("enough power for the whole circuit and press reset (after ejecting CIRCUITPY).\r\n"); } } mp_hal_stdout_tx_str("\r\nPress any key to enter the REPL. Use CTRL-D to reload.\r\n"); } if (cdc_enabled_before && !mp_cdc_enabled) { cdc_enabled_at_start = false; } cdc_enabled_before = mp_cdc_enabled; #if defined(MICROPY_HW_NEOPIXEL) || (defined(MICROPY_HW_APA102_MOSI) && defined(MICROPY_HW_APA102_SCK)) uint32_t tick_diff = ticks_ms - pattern_start; if (result.return_code != PYEXEC_EXCEPTION) { // All is good. Ramp ALL_DONE up and down. if (tick_diff > ALL_GOOD_CYCLE_MS) { pattern_start = ticks_ms; tick_diff = 0; } uint16_t brightness = tick_diff * 255 / (ALL_GOOD_CYCLE_MS / 2); if (brightness > 255) { brightness = 511 - brightness; } if (safe_mode == NO_SAFE_MODE) { new_status_color(color_brightness(ALL_DONE, brightness)); } else { new_status_color(color_brightness(SAFE_MODE, brightness)); } } else { if (tick_diff > total_exception_cycle) { pattern_start = ticks_ms; tick_diff = 0; } // First flash the file color. if (tick_diff < EXCEPTION_TYPE_LENGTH_MS) { if (found_main) { new_status_color(MAIN_RUNNING); } else { new_status_color(BOOT_RUNNING); } // Next flash the exception color. } else if (tick_diff < EXCEPTION_TYPE_LENGTH_MS * 2) { if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_IndentationError)) { new_status_color(INDENTATION_ERROR); } else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_SyntaxError)) { new_status_color(SYNTAX_ERROR); } else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_NameError)) { new_status_color(NAME_ERROR); } else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_OSError)) { new_status_color(OS_ERROR); } else if (mp_obj_is_subclass_fast(result.exception_type, &mp_type_ValueError)) { new_status_color(VALUE_ERROR); } else { new_status_color(OTHER_ERROR); } // Finally flash the line number digits from highest to lowest. // Zeroes will not produce a flash but can be read by the absence of // a color from the sequence. } else if (tick_diff < (EXCEPTION_TYPE_LENGTH_MS * 2 + LINE_NUMBER_TOGGLE_LENGTH * digit_sum)) { uint32_t digit_diff = tick_diff - EXCEPTION_TYPE_LENGTH_MS * 2; if ((digit_diff % LINE_NUMBER_TOGGLE_LENGTH) < (LINE_NUMBER_TOGGLE_LENGTH / 2)) { new_status_color(BLACK); } else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * thousands) { if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH) { new_status_color(BLACK); } else { new_status_color(THOUSANDS); } } else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds)) { if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + 1)) { new_status_color(BLACK); } else { new_status_color(HUNDREDS); } } else if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + tens)) { if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + 1)) { new_status_color(BLACK); } else { new_status_color(TENS); } } else { if (digit_diff < LINE_NUMBER_TOGGLE_LENGTH * (thousands + hundreds + tens + 1)) { new_status_color(BLACK); } else { new_status_color(ONES); } } } else { new_status_color(BLACK); } } #else (void) found_main; // Pretend to use found_main so the compiler doesn't complain. #endif } } #ifdef UART_REPL struct usart_module usart_instance; #endif #ifdef ENABLE_MICRO_TRACE_BUFFER // Stores 2 ^ TRACE_BUFFER_MAGNITUDE_PACKETS packets. // 7 -> 128 packets #define TRACE_BUFFER_MAGNITUDE_PACKETS 7 // Size in uint32_t. Two per packet. #define TRACE_BUFFER_SIZE (1 << (TRACE_BUFFER_MAGNITUDE_PACKETS + 1)) // Size in bytes. 4 bytes per uint32_t. #define TRACE_BUFFER_SIZE_BYTES (TRACE_BUFFER_SIZE << 2) __attribute__((__aligned__(TRACE_BUFFER_SIZE_BYTES))) uint32_t mtb[TRACE_BUFFER_SIZE]; #endif // Serial number as hex characters. char serial_number[USB_DEVICE_GET_SERIAL_NAME_LENGTH]; void load_serial_number(void) { char nibble_to_hex[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'}; uint32_t* addresses[4] = {(uint32_t *) 0x0080A00C, (uint32_t *) 0x0080A040, (uint32_t *) 0x0080A044, (uint32_t *) 0x0080A048}; for (int i = 0; i < 4; i++) { for (int j = 0; j < 8; j++) { uint8_t nibble = (*(addresses[i]) >> j * 4) & 0xf; serial_number[i * 8 + j] = nibble_to_hex[nibble]; } } } // Provided by the linker; extern uint32_t _ezero; safe_mode_t samd21_init(void) { #ifdef ENABLE_MICRO_TRACE_BUFFER REG_MTB_POSITION = ((uint32_t) (mtb - REG_MTB_BASE)) & 0xFFFFFFF8; REG_MTB_FLOW = (((uint32_t) mtb - REG_MTB_BASE) + TRACE_BUFFER_SIZE_BYTES) & 0xFFFFFFF8; REG_MTB_MASTER = 0x80000000 + (TRACE_BUFFER_MAGNITUDE_PACKETS - 1); #else // Triple check that the MTB is off. Switching between debug and non-debug // builds can leave it set over reset and wreak havok as a result. REG_MTB_MASTER = 0x00000000 + 6; #endif // On power on start or external reset, set _ezero to the canary word. If it // gets killed, we boot in safe mod. _ezero is the boundary between statically // allocated memory including the fixed MicroPython heap and the stack. If either // misbehaves, the canary will not be in tact after soft reset. #ifdef CIRCUITPY_CANARY_WORD if (PM->RCAUSE.bit.POR == 1 || PM->RCAUSE.bit.EXT == 1) { _ezero = CIRCUITPY_CANARY_WORD; } else if (PM->RCAUSE.bit.SYST == 1) { // If we're starting from a system reset we're likely coming from the // bootloader or hard fault handler. If we're coming from the handler // the canary will be CIRCUITPY_SAFE_RESTART_WORD and we don't want to // revive the canary so that a second hard fault won't restart. Resets // from anywhere else are ok. if (_ezero == CIRCUITPY_SAFE_RESTART_WORD) { _ezero = ~CIRCUITPY_CANARY_WORD; } else { _ezero = CIRCUITPY_CANARY_WORD; } } #endif load_serial_number(); irq_initialize_vectors(); cpu_irq_enable(); // Initialize the sleep manager sleepmgr_init(); uint16_t dfll_fine_calibration = 0x1ff; #ifdef CALIBRATE_CRYSTALLESS // This is stored in an NVM page after the text and data storage but before // the optional file system. The first 16 bytes are the identifier for the // section. if (strcmp((char*) INTERNAL_CIRCUITPY_CONFIG_START_ADDR, "CIRCUITPYTHON1") == 0) { dfll_fine_calibration = ((uint16_t *) INTERNAL_CIRCUITPY_CONFIG_START_ADDR)[8]; } #endif // We pass in the DFLL fine calibration because we can't change it once the // clock is going. system_init(dfll_fine_calibration); delay_init(); board_init(); // Configure millisecond timer initialization. tick_init(); // Uncomment to init PIN_PA17 for debugging. // struct port_config pin_conf; // port_get_config_defaults(&pin_conf); // // pin_conf.direction = PORT_PIN_DIR_OUTPUT; // port_pin_set_config(MICROPY_HW_LED1, &pin_conf); // port_pin_set_output_level(MICROPY_HW_LED1, false); rgb_led_status_init(); // Init the nvm controller. struct nvm_config config_nvm; nvm_get_config_defaults(&config_nvm); config_nvm.manual_page_write = false; nvm_set_config(&config_nvm); init_shared_dma(); #ifdef CIRCUITPY_CANARY_WORD // Run in safe mode if the canary is corrupt. if (_ezero != CIRCUITPY_CANARY_WORD) { return HARD_CRASH; } #endif if (PM->RCAUSE.bit.BOD33 == 1 || PM->RCAUSE.bit.BOD12 == 1) { return BROWNOUT; } if (board_requests_safe_mode()) { return USER_SAFE_MODE; } #if CIRCUITPY_INTERNAL_NVM_SIZE > 0 // Upgrade the nvm flash to include one sector for eeprom emulation. struct nvm_fusebits fuses; if (nvm_get_fuses(&fuses) == STATUS_OK && fuses.eeprom_size == NVM_EEPROM_EMULATOR_SIZE_0) { #ifdef INTERNAL_FLASH_FS // Shift the internal file system up one row. for (uint8_t row = 0; row < TOTAL_INTERNAL_FLASH_SIZE / NVMCTRL_ROW_SIZE; row++) { uint32_t new_row_address = INTERNAL_FLASH_MEM_SEG1_START_ADDR + row * NVMCTRL_ROW_SIZE; nvm_erase_row(new_row_address); nvm_write_buffer(new_row_address, (uint8_t*) (new_row_address + CIRCUITPY_INTERNAL_EEPROM_SIZE), NVMCTRL_ROW_SIZE); } #endif uint32_t nvm_size = CIRCUITPY_INTERNAL_NVM_SIZE; uint8_t enum_value = 6; while (nvm_size > 256 && enum_value != 255) { nvm_size /= 2; enum_value -= 1; } if (enum_value != 255 && nvm_size == 256) { // Mark the last section as eeprom now. fuses.eeprom_size = (enum nvm_eeprom_emulator_size) enum_value; nvm_set_fuses(&fuses); } } #endif return NO_SAFE_MODE; } extern uint32_t _estack; extern uint32_t _ebss; int main(void) { // initialise the cpu and peripherals safe_mode_t safe_mode = samd21_init(); // Stack limit should be less than real stack size, so we have a chance // to recover from limit hit. (Limit is measured in bytes.) mp_stack_ctrl_init(); mp_stack_set_limit((char*)&_estack - (char*)&_ebss - 1024); #if MICROPY_MAX_STACK_USAGE // _ezero (same as _ebss) is an int, so start 4 bytes above it. mp_stack_set_bottom(&_ezero + 1); mp_stack_fill_with_sentinel(); #endif // Create a new filesystem only if we're not in a safe mode. // A power brownout here could make it appear as if there's // no SPI flash filesystem, and we might erase the existing one. init_flash_fs(safe_mode == NO_SAFE_MODE); // Reset everything and prep MicroPython to run boot.py. reset_samd21(); reset_board(); reset_mp(); // Turn on autoreload by default but before boot.py in case it wants to change it. autoreload_enable(); // By default our internal flash is readonly to local python code and // writeable over USB. Set it here so that boot.py can change it. flash_set_usb_writeable(true); // If not in safe mode, run boot before initing USB and capture output in a // file. if (safe_mode == NO_SAFE_MODE && MP_STATE_VM(vfs_mount_table) != NULL) { new_status_color(BOOT_RUNNING); #ifdef CIRCUITPY_BOOT_OUTPUT_FILE // Since USB isn't up yet we can cheat and let ourselves write the boot // output file. flash_set_usb_writeable(false); FIL file_pointer; boot_output_file = &file_pointer; f_open(&((fs_user_mount_t *) MP_STATE_VM(vfs_mount_table)->obj)->fatfs, boot_output_file, CIRCUITPY_BOOT_OUTPUT_FILE, FA_WRITE | FA_CREATE_ALWAYS); flash_set_usb_writeable(true); #endif // TODO(tannewt): Re-add support for flashing boot error output. bool found_boot = maybe_run("settings.txt", NULL) || maybe_run("settings.py", NULL) || maybe_run("boot.py", NULL) || maybe_run("boot.txt", NULL); (void) found_boot; #ifdef CIRCUITPY_BOOT_OUTPUT_FILE f_close(boot_output_file); flash_flush(); boot_output_file = NULL; #endif // Reset to remove any state that boot.py setup. It should only be used to // change internal state thats not in the heap. reset_samd21(); reset_mp(); } usb_hid_init(); // Start USB after getting everything going. #ifdef USB_REPL udc_start(); #endif // Boot script is finished, so now go into REPL/main mode. int exit_code = PYEXEC_FORCED_EXIT; bool skip_repl = true; bool first_run = true; for (;;) { if (!skip_repl) { // The REPL mode can change, or it can request a reload. bool autoreload_on = autoreload_is_enabled(); autoreload_disable(); new_status_color(REPL_RUNNING); if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) { exit_code = pyexec_raw_repl(); } else { exit_code = pyexec_friendly_repl(); } if (autoreload_on) { autoreload_enable(); } reset_samd21(); reset_board(); reset_mp(); } if (exit_code == PYEXEC_FORCED_EXIT) { if (!first_run) { mp_hal_stdout_tx_str("soft reboot\r\n"); } first_run = false; skip_repl = start_mp(safe_mode); reset_samd21(); reset_board(); reset_mp(); } else if (exit_code != 0) { break; } } mp_deinit(); return 0; } void gc_collect(void) { // WARNING: This gc_collect implementation doesn't try to get root // pointers from CPU registers, and thus may function incorrectly. void *dummy; gc_collect_start(); // This collects root pointers from the VFS mount table. Some of them may // have lost their references in the VM even though they are mounted. gc_collect_root((void**)&MP_STATE_VM(vfs_mount_table), sizeof(mp_vfs_mount_t) / sizeof(mp_uint_t)); // This naively collects all object references from an approximate stack // range. gc_collect_root(&dummy, ((mp_uint_t)&_estack - (mp_uint_t)&dummy) / sizeof(mp_uint_t)); gc_collect_end(); } void NORETURN nlr_jump_fail(void *val) { HardFault_Handler(); while (true) {} } void NORETURN __fatal_error(const char *msg) { HardFault_Handler(); while (true) {} } #ifndef NDEBUG void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) { printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line); __fatal_error("Assertion failed"); } #endif