/* * This file is part of the Micro Python project, http://micropython.org/ * * The MIT License (MIT) * * Copyright (c) 2017 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "lib/utils/context_manager_helpers.h" #include "py/binary.h" #include "py/objproperty.h" #include "py/runtime.h" #include "shared-bindings/microcontroller/Pin.h" #include "shared-bindings/audiobusio/PDMIn.h" #include "shared-bindings/util.h" //| .. currentmodule:: audiobusio //| //| :class:`PDMIn` -- Record an input PDM audio stream //| ======================================================== //| //| PDMIn can be used to record an input audio signal on a given set of pins. //| //| .. class:: PDMIn(clock_pin, data_pin, \*, frequency=8000, bit_depth=8, mono=True, oversample=64) //| //| Create a PDMIn object associated with the given pins. This allows you to //| record audio signals from the given pins. Individual ports may put further //| restrictions on the recording parameters. The overall frequency is //| determined by `frequency` x `oversample`, and the total must be 1MHz or //| higher, so `frequency` must be a minimum of 16000. //| //| :param ~microcontroller.Pin clock_pin: The pin to output the clock to //| :param ~microcontroller.Pin data_pin: The pin to read the data from //| :param int frequency: Target frequency in Hz of the resulting samples. Check `frequency` for real value //| :param int bit_depth: Final number of bits per sample. Must be divisible by 8 //| :param bool mono: True when capturing a single channel of audio, captures two channels otherwise //| :param int oversample: Number of single bit samples to decimate into a final sample. Must be divisible by 8 //| //| Record 8-bit unsigned samples to buffer:: //| //| import audiobusio //| import board //| //| # Prep a buffer to record into //| b = bytearray(200) //| with audiobusio.PDMIn(board.MICROPHONE_CLOCK, board.MICROPHONE_DATA, frequency=16000) as mic: //| mic.record(b, len(b)) //| //| Record 16-bit unsigned samples to buffer:: //| //| import audiobusio //| import board //| //| # Prep a buffer to record into. The array interface doesn't allow for //| # constructing with a set size so we append to it until we have the size //| # we want. //| b = array.array("H") //| for i in range(200): //| b.append(0) //| with audiobusio.PDMIn(board.MICROPHONE_CLOCK, board.MICROPHONE_DATA, frequency=16000, bit_depth=16) as mic: //| mic.record(b, len(b)) //| STATIC mp_obj_t audiobusio_pdmin_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *pos_args) { enum { ARG_frequency, ARG_bit_depth, ARG_mono, ARG_oversample }; mp_map_t kw_args; mp_map_init_fixed_table(&kw_args, n_kw, pos_args + n_args); static const mp_arg_t allowed_args[] = { { MP_QSTR_frequency, MP_ARG_INT, {.u_int = 8000} }, { MP_QSTR_bit_depth, MP_ARG_INT, {.u_int = 8} }, { MP_QSTR_mono, MP_ARG_BOOL,{.u_bool = true} }, { MP_QSTR_oversample, MP_ARG_INT, {.u_int = 64} }, }; mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args - 2, pos_args + 2, &kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); mp_obj_t clock_pin_obj = pos_args[0]; assert_pin(clock_pin_obj, false); const mcu_pin_obj_t *clock_pin = MP_OBJ_TO_PTR(clock_pin_obj); assert_pin_free(clock_pin); mp_obj_t data_pin_obj = pos_args[1]; assert_pin(data_pin_obj, false); const mcu_pin_obj_t *data_pin = MP_OBJ_TO_PTR(data_pin_obj); assert_pin_free(data_pin); // create PDMIn object from the given pin audiobusio_pdmin_obj_t *self = m_new_obj(audiobusio_pdmin_obj_t); self->base.type = &audiobusio_pdmin_type; uint32_t frequency = args[ARG_frequency].u_int; uint8_t bit_depth = args[ARG_bit_depth].u_int; if (bit_depth % 8 != 0) { mp_raise_ValueError("Bit depth must be multiple of 8."); } uint8_t oversample = args[ARG_oversample].u_int; if (oversample % 8 != 0) { mp_raise_ValueError("Oversample must be multiple of 8."); } bool mono = args[ARG_mono].u_bool; common_hal_audiobusio_pdmin_construct(self, clock_pin, data_pin, frequency, bit_depth, mono, oversample); return MP_OBJ_FROM_PTR(self); } //| .. method:: deinit() //| //| Deinitialises the PWMOut and releases any hardware resources for reuse. //| STATIC mp_obj_t audiobusio_pdmin_deinit(mp_obj_t self_in) { audiobusio_pdmin_obj_t *self = MP_OBJ_TO_PTR(self_in); common_hal_audiobusio_pdmin_deinit(self); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_1(audiobusio_pdmin_deinit_obj, audiobusio_pdmin_deinit); //| .. method:: __enter__() //| //| No-op used by Context Managers. //| // Provided by context manager helper. //| .. method:: __exit__() //| //| Automatically deinitializes the hardware when exiting a context. //| STATIC mp_obj_t audiobusio_pdmin_obj___exit__(size_t n_args, const mp_obj_t *args) { (void)n_args; common_hal_audiobusio_pdmin_deinit(args[0]); return mp_const_none; } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(audiobusio_pdmin___exit___obj, 4, 4, audiobusio_pdmin_obj___exit__); //| .. method:: record(destination, destination_length) //| //| Records destination_length bytes of samples to destination. This is //| blocking. //| //| An IOError may be raised when the destination is too slow to record the //| audio at the given rate. For internal flash, writing all 1s to the file //| before recording is recommended to speed up writes. //| STATIC mp_obj_t audiobusio_pdmin_obj_record(mp_obj_t self_obj, mp_obj_t destination, mp_obj_t destination_length) { audiobusio_pdmin_obj_t *self = MP_OBJ_TO_PTR(self_obj); raise_error_if_deinited(common_hal_audiobusio_pdmin_deinited(self)); if (!MP_OBJ_IS_SMALL_INT(destination_length)) { mp_raise_TypeError("destination_length must be int"); } uint32_t length = MP_OBJ_SMALL_INT_VALUE(destination_length); mp_buffer_info_t bufinfo; if (MP_OBJ_IS_TYPE(destination, &fatfs_type_fileio)) { mp_raise_NotImplementedError(""); } else if (mp_get_buffer(destination, &bufinfo, MP_BUFFER_WRITE)) { if (bufinfo.len < length) { mp_raise_ValueError("Target buffer cannot hold destination_length bytes."); } uint8_t bit_depth = common_hal_audiobusio_pdmin_get_bit_depth(self); if (bufinfo.typecode != 'H' && bit_depth == 16) { mp_raise_ValueError("destination buffer must be an array of type 'H' for bit_depth = 16"); } else if (bufinfo.typecode != 'B' && bufinfo.typecode != BYTEARRAY_TYPECODE && bit_depth == 8) { mp_raise_ValueError("destination buffer must be a bytearray or array of type 'B' for bit_depth = 8"); } length *= bit_depth / 8; uint32_t length_written = common_hal_audiobusio_pdmin_record_to_buffer(self, bufinfo.buf, length); if (length_written != length) { mp_printf(&mp_plat_print, "length mismatch %d %d\n", length_written, length); } } return mp_const_none; } MP_DEFINE_CONST_FUN_OBJ_3(audiobusio_pdmin_record_obj, audiobusio_pdmin_obj_record); //| .. attribute:: frequency //| //| The actual frequency of the recording. This may not match the constructed //| frequency due to internal clock limitations. //| STATIC mp_obj_t audiobusio_pdmin_obj_get_frequency(mp_obj_t self_in) { audiobusio_pdmin_obj_t *self = MP_OBJ_TO_PTR(self_in); raise_error_if_deinited(common_hal_audiobusio_pdmin_deinited(self)); return MP_OBJ_NEW_SMALL_INT(common_hal_audiobusio_pdmin_get_frequency(self)); } MP_DEFINE_CONST_FUN_OBJ_1(audiobusio_pdmin_get_frequency_obj, audiobusio_pdmin_obj_get_frequency); const mp_obj_property_t audiobusio_pdmin_frequency_obj = { .base.type = &mp_type_property, .proxy = {(mp_obj_t)&audiobusio_pdmin_get_frequency_obj, (mp_obj_t)&mp_const_none_obj, (mp_obj_t)&mp_const_none_obj}, }; STATIC const mp_rom_map_elem_t audiobusio_pdmin_locals_dict_table[] = { // Methods { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&audiobusio_pdmin_deinit_obj) }, { MP_ROM_QSTR(MP_QSTR___enter__), MP_ROM_PTR(&default___enter___obj) }, { MP_ROM_QSTR(MP_QSTR___exit__), MP_ROM_PTR(&audiobusio_pdmin___exit___obj) }, { MP_ROM_QSTR(MP_QSTR_record), MP_ROM_PTR(&audiobusio_pdmin_record_obj) }, { MP_ROM_QSTR(MP_QSTR_frequency), MP_ROM_PTR(&audiobusio_pdmin_frequency_obj) } }; STATIC MP_DEFINE_CONST_DICT(audiobusio_pdmin_locals_dict, audiobusio_pdmin_locals_dict_table); const mp_obj_type_t audiobusio_pdmin_type = { { &mp_type_type }, .name = MP_QSTR_PDMIn, .make_new = audiobusio_pdmin_make_new, .locals_dict = (mp_obj_dict_t*)&audiobusio_pdmin_locals_dict, };