#include #include #include "nlr.h" #include "misc.h" #include "mpconfig.h" #if MICROPY_HW_HAS_LCD #include "qstr.h" #include "parse.h" #include "obj.h" #include "runtime.h" #include "systick.h" #include "font_petme128_8x8.h" #include "lcd.h" #if defined(PYBOARD3) #define PYB_LCD_PORT (GPIOA) #define PYB_LCD_CS1_PIN (GPIO_Pin_0) #define PYB_LCD_RST_PIN (GPIO_Pin_1) #define PYB_LCD_A0_PIN (GPIO_Pin_2) #define PYB_LCD_SCL_PIN (GPIO_Pin_3) #define PYB_LCD_SI_PIN (GPIO_Pin_4) #elif defined(PYBOARD4) // X position #define PYB_LCD_PORT (GPIOA) #define PYB_LCD_CS1_PIN (GPIO_Pin_2) // X3 #define PYB_LCD_RST_PIN (GPIO_Pin_3) // X4 #define PYB_LCD_A0_PIN (GPIO_Pin_4) // X5 #define PYB_LCD_SCL_PIN (GPIO_Pin_5) // X6 #define PYB_LCD_SI_PIN (GPIO_Pin_7) // X8 #define PYB_LCD_BL_PORT (GPIOC) #define PYB_LCD_BL_PIN (GPIO_Pin_5) // X12 /* // Y position #define PYB_LCD_PORT (GPIOB) #define PYB_LCD_CS1_PIN (GPIO_Pin_8) // Y3 = PB8 #define PYB_LCD_RST_PIN (GPIO_Pin_9) // Y4 = PB9 #define PYB_LCD_A0_PIN (GPIO_Pin_12) // Y5 = PB12 #define PYB_LCD_SCL_PIN (GPIO_Pin_13) // Y6 = PB13 #define PYB_LCD_SI_PIN (GPIO_Pin_15) // Y8 = PB15 #define PYB_LCD_BL_PORT (GPIOB) #define PYB_LCD_BL_PIN (GPIO_Pin_1) // Y12 = PB1 */ #elif defined(STM32F4DISC) /* Configure if needed */ #define PYB_LCD_PORT (GPIOA) #define PYB_LCD_CS1_PIN (GPIO_Pin_2) // X3 #define PYB_LCD_RST_PIN (GPIO_Pin_3) // X4 #define PYB_LCD_A0_PIN (GPIO_Pin_4) // X5 #define PYB_LCD_SCL_PIN (GPIO_Pin_5) // X6 #define PYB_LCD_SI_PIN (GPIO_Pin_7) // X8 #define PYB_LCD_BL_PORT (GPIOC) #define PYB_LCD_BL_PIN (GPIO_Pin_5) // X12 #endif #define LCD_INSTR (0) #define LCD_DATA (1) static void lcd_out(int instr_data, uint8_t i) { sys_tick_delay_ms(0); PYB_LCD_PORT->BSRRH = PYB_LCD_CS1_PIN; // CS=0; enable if (instr_data == LCD_INSTR) { PYB_LCD_PORT->BSRRH = PYB_LCD_A0_PIN; // A0=0; select instr reg } else { PYB_LCD_PORT->BSRRL = PYB_LCD_A0_PIN; // A0=1; select data reg } // send byte bigendian, latches on rising clock for (uint32_t n = 0; n < 8; n++) { sys_tick_delay_ms(0); PYB_LCD_PORT->BSRRH = PYB_LCD_SCL_PIN; // SCL=0 if ((i & 0x80) == 0) { PYB_LCD_PORT->BSRRH = PYB_LCD_SI_PIN; // SI=0 } else { PYB_LCD_PORT->BSRRL = PYB_LCD_SI_PIN; // SI=1 } i <<= 1; sys_tick_delay_ms(0); PYB_LCD_PORT->BSRRL = PYB_LCD_SCL_PIN; // SCL=1 } PYB_LCD_PORT->BSRRL = PYB_LCD_CS1_PIN; // CS=1; disable /* in Python, native types: CS1_PIN(const) = 0 n = int(0) delay_ms(0) PORT[word:BSRRH] = 1 << CS1_PIN for n in range(0, 8): delay_ms(0) PORT[word:BSRRH] = 1 << SCL_PIN if i & 0x80 == 0: PORT[word:BSRRH] = 1 << SI_PIN else: PORT[word:BSRRL] = 1 << SI_PIN i <<= 1 delay_ms(0) PORT[word:BSRRL] = 1 << SCL_PIN */ } /* static void lcd_data_out(uint8_t i) { delay_ms(0); PYB_LCD_PORT->BSRRH = PYB_LCD_CS1_PIN; // CS=0; enable PYB_LCD_PORT->BSRRL = PYB_LCD_A0_PIN; // A0=1; select data reg // send byte bigendian, latches on rising clock for (uint32_t n = 0; n < 8; n++) { delay_ms(0); PYB_LCD_PORT->BSRRH = PYB_LCD_SCL_PIN; // SCL=0 if ((i & 0x80) == 0) { PYB_LCD_PORT->BSRRH = PYB_LCD_SI_PIN; // SI=0 } else { PYB_LCD_PORT->BSRRL = PYB_LCD_SI_PIN; // SI=1 } i <<= 1; delay_ms(0); PYB_LCD_PORT->BSRRL = PYB_LCD_SCL_PIN; // SCL=1 } PYB_LCD_PORT->BSRRL = PYB_LCD_CS1_PIN; // CS=1; disable } */ // writes 8 vertical pixels // pos 0 is upper left, pos 1 is 8 pixels to right of that, pos 128 is 8 pixels below that mp_obj_t lcd_draw_pixel_8(mp_obj_t mp_pos, mp_obj_t mp_val) { int pos = mp_obj_get_int(mp_pos); int val = mp_obj_get_int(mp_val); int page = pos / 128; int offset = pos - (page * 128); lcd_out(LCD_INSTR, 0xb0 | page); // page address set lcd_out(LCD_INSTR, 0x10 | ((offset >> 4) & 0x0f)); // column address set upper lcd_out(LCD_INSTR, 0x00 | (offset & 0x0f)); // column address set lower lcd_out(LCD_DATA, val); // write data return mp_const_none; } #define LCD_BUF_W (16) #define LCD_BUF_H (4) char lcd_char_buffer[LCD_BUF_W * LCD_BUF_H]; int lcd_line; int lcd_column; int lcd_next_line; #define LCD_PIX_BUF_SIZE (128 * 32 / 8) byte lcd_pix_buf[LCD_PIX_BUF_SIZE]; byte lcd_pix_buf2[LCD_PIX_BUF_SIZE]; mp_obj_t lcd_pix_clear(void) { memset(lcd_pix_buf, 0, LCD_PIX_BUF_SIZE); memset(lcd_pix_buf2, 0, LCD_PIX_BUF_SIZE); return mp_const_none; } mp_obj_t lcd_pix_get(mp_obj_t mp_x, mp_obj_t mp_y) { int x = mp_obj_get_int(mp_x); int y = mp_obj_get_int(mp_y); if (0 <= x && x <= 127 && 0 <= y && y <= 31) { uint byte_pos = x + 128 * ((uint)y >> 3); if (lcd_pix_buf[byte_pos] & (1 << (y & 7))) { return mp_obj_new_int(1); } } return mp_obj_new_int(0); } mp_obj_t lcd_pix_set(mp_obj_t mp_x, mp_obj_t mp_y) { int x = mp_obj_get_int(mp_x); int y = mp_obj_get_int(mp_y); if (0 <= x && x <= 127 && 0 <= y && y <= 31) { uint byte_pos = x + 128 * ((uint)y >> 3); lcd_pix_buf2[byte_pos] |= 1 << (y & 7); } return mp_const_none; } mp_obj_t lcd_pix_reset(mp_obj_t mp_x, mp_obj_t mp_y) { int x = mp_obj_get_int(mp_x); int y = mp_obj_get_int(mp_y); if (0 <= x && x <= 127 && 0 <= y && y <= 31) { uint byte_pos = x + 128 * ((uint)y >> 3); lcd_pix_buf2[byte_pos] &= ~(1 << (y & 7)); } return mp_const_none; } mp_obj_t lcd_pix_show(void) { memcpy(lcd_pix_buf, lcd_pix_buf2, LCD_PIX_BUF_SIZE); for (uint page = 0; page < 4; page++) { lcd_out(LCD_INSTR, 0xb0 | page); // page address set lcd_out(LCD_INSTR, 0x10); // column address set upper; 0 lcd_out(LCD_INSTR, 0x00); // column address set lower; 0 for (uint i = 0; i < 128; i++) { lcd_out(LCD_DATA, lcd_pix_buf[i + 128 * page]); } } return mp_const_none; } mp_obj_t lcd_print(mp_obj_t text) { uint len; const byte *data = mp_obj_str_get_data(text, &len); lcd_print_strn((const char*)data, len); return mp_const_none; } mp_obj_t lcd_light(mp_obj_t value) { #if defined(PYB_LCD_BL_PORT) if (rt_is_true(value)) { PYB_LCD_BL_PORT->BSRRL = PYB_LCD_BL_PIN; // set pin high to turn backlight on } else { PYB_LCD_BL_PORT->BSRRH = PYB_LCD_BL_PIN; // set pin low to turn backlight off } #endif return mp_const_none; } static mp_obj_t mp_lcd = MP_OBJ_NULL; static mp_obj_t pyb_lcd_init(void) { if (mp_lcd != MP_OBJ_NULL) { // already init'd return mp_lcd; } // set the outputs high PYB_LCD_PORT->BSRRL = PYB_LCD_CS1_PIN; PYB_LCD_PORT->BSRRL = PYB_LCD_RST_PIN; PYB_LCD_PORT->BSRRL = PYB_LCD_A0_PIN; PYB_LCD_PORT->BSRRL = PYB_LCD_SCL_PIN; PYB_LCD_PORT->BSRRL = PYB_LCD_SI_PIN; // make them push/pull outputs GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = PYB_LCD_CS1_PIN | PYB_LCD_RST_PIN | PYB_LCD_A0_PIN | PYB_LCD_SCL_PIN | PYB_LCD_SI_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(PYB_LCD_PORT, &GPIO_InitStructure); #if defined(PYB_LCD_BL_PORT) // backlight drive pin, starts low (off) PYB_LCD_BL_PORT->BSRRH = PYB_LCD_BL_PIN; GPIO_InitStructure.GPIO_Pin = PYB_LCD_BL_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(PYB_LCD_BL_PORT, &GPIO_InitStructure); #endif // init the LCD sys_tick_delay_ms(1); // wait a bit PYB_LCD_PORT->BSRRH = PYB_LCD_RST_PIN; // RST=0; reset sys_tick_delay_ms(1); // wait for reset; 2us min PYB_LCD_PORT->BSRRL = PYB_LCD_RST_PIN; // RST=1; enable sys_tick_delay_ms(1); // wait for reset; 2us min lcd_out(LCD_INSTR, 0xa0); // ADC select, normal lcd_out(LCD_INSTR, 0xc8); // common output mode select, reverse lcd_out(LCD_INSTR, 0xa2); // LCD bias set, 1/9 bias lcd_out(LCD_INSTR, 0x2f); // power control set, 0b111=(booster on, vreg on, vfollow on) lcd_out(LCD_INSTR, 0x21); // v0 voltage regulator internal resistor ratio set, 0b001=small lcd_out(LCD_INSTR, 0x81); // electronic volume mode set lcd_out(LCD_INSTR, 0x34); // electronic volume register set, 0b110100 lcd_out(LCD_INSTR, 0x40); // display start line set, 0 lcd_out(LCD_INSTR, 0xaf); // LCD display, on // clear display for (int page = 0; page < 4; page++) { lcd_out(LCD_INSTR, 0xb0 | page); // page address set lcd_out(LCD_INSTR, 0x10); // column address set upper lcd_out(LCD_INSTR, 0x00); // column address set lower for (int i = 0; i < 128; i++) { lcd_out(LCD_DATA, 0x00); } } for (int i = 0; i < LCD_BUF_H * LCD_BUF_W; i++) { lcd_char_buffer[i] = ' '; } lcd_line = 0; lcd_column = 0; lcd_next_line = 0; // Micro Python interface mp_obj_t o = mp_obj_new_type("LCD", mp_const_empty_tuple, mp_obj_new_dict(0)); rt_store_attr(o, qstr_from_str("lcd8"), rt_make_function_n(2, lcd_draw_pixel_8)); rt_store_attr(o, qstr_from_str("clear"), rt_make_function_n(0, lcd_pix_clear)); rt_store_attr(o, qstr_from_str("get"), rt_make_function_n(2, lcd_pix_get)); rt_store_attr(o, qstr_from_str("set"), rt_make_function_n(2, lcd_pix_set)); rt_store_attr(o, qstr_from_str("reset"), rt_make_function_n(2, lcd_pix_reset)); rt_store_attr(o, qstr_from_str("show"), rt_make_function_n(0, lcd_pix_show)); rt_store_attr(o, qstr_from_str("text"), rt_make_function_n(1, lcd_print)); rt_store_attr(o, qstr_from_str("light"), rt_make_function_n(1, lcd_light)); mp_lcd = o; return o; } static MP_DEFINE_CONST_FUN_OBJ_0(pyb_lcd_init_obj, pyb_lcd_init); void lcd_init(void) { mp_lcd = MP_OBJ_NULL; rt_store_name(qstr_from_str("LCD"), (mp_obj_t)&pyb_lcd_init_obj); } void lcd_print_str(const char *str) { lcd_print_strn(str, strlen(str)); } void lcd_print_strn(const char *str, unsigned int len) { int redraw_min = lcd_line * LCD_BUF_W + lcd_column; int redraw_max = redraw_min; int did_new_line = 0; for (; len > 0; len--, str++) { // move to next line if needed if (lcd_next_line) { if (lcd_line + 1 < LCD_BUF_H) { lcd_line += 1; } else { lcd_line = LCD_BUF_H - 1; for (int i = 0; i < LCD_BUF_W * (LCD_BUF_H - 1); i++) { lcd_char_buffer[i] = lcd_char_buffer[i + LCD_BUF_W]; } for (int i = 0; i < LCD_BUF_W; i++) { lcd_char_buffer[LCD_BUF_W * (LCD_BUF_H - 1) + i] = ' '; } redraw_min = 0; redraw_max = LCD_BUF_W * LCD_BUF_H; } lcd_next_line = 0; lcd_column = 0; did_new_line = 1; } if (*str == '\n') { lcd_next_line = 1; } else if (*str == '\r') { lcd_column = 0; } else if (*str == '\b') { if (lcd_column > 0) { lcd_column--; } } else if (lcd_column >= LCD_BUF_W) { lcd_next_line = 1; str -= 1; len += 1; } else { lcd_char_buffer[lcd_line * LCD_BUF_W + lcd_column] = *str; lcd_column += 1; int max = lcd_line * LCD_BUF_W + lcd_column; if (max > redraw_max) { redraw_max = max; } } } int last_page = -1; for (int i = redraw_min; i < redraw_max; i++) { int page = i / LCD_BUF_W; if (page != last_page) { int offset = 8 * (i - (page * LCD_BUF_W)); lcd_out(LCD_INSTR, 0xb0 | page); // page address set lcd_out(LCD_INSTR, 0x10 | ((offset >> 4) & 0x0f)); // column address set upper lcd_out(LCD_INSTR, 0x00 | (offset & 0x0f)); // column address set lower last_page = page; } int chr = lcd_char_buffer[i]; if (chr < 32 || chr > 126) { chr = 127; } const uint8_t *chr_data = &font_petme128_8x8[(chr - 32) * 8]; for (int j = 0; j < 8; j++) { lcd_out(LCD_DATA, chr_data[j]); } } if (did_new_line) { sys_tick_delay_ms(50); } } #endif // MICROPY_HW_HAS_LCD